File size: 7,124 Bytes
041bd28
a9aa30e
041bd28
698d4cd
ccdc62f
041bd28
 
213e5d3
 
041bd28
a9aa30e
 
 
213e5d3
 
698d4cd
213e5d3
a9aa30e
 
041bd28
9c06b1a
a9aa30e
041bd28
 
 
 
 
9c06b1a
a9aa30e
041bd28
 
 
 
a9aa30e
041bd28
 
a9aa30e
 
 
 
 
 
 
 
 
2f15cbe
a9aa30e
 
 
 
 
 
 
 
 
 
 
041bd28
 
 
 
a9aa30e
041bd28
ccdc62f
a9aa30e
ccdc62f
a9aa30e
041bd28
 
a9aa30e
 
041bd28
 
81b2481
041bd28
81b2481
698d4cd
a9aa30e
 
 
 
 
 
 
24da5c3
a9aa30e
 
 
 
041bd28
18fbeec
698d4cd
041bd28
 
a9aa30e
 
041bd28
a9aa30e
 
041bd28
 
a9aa30e
041bd28
 
 
 
4d9e689
041bd28
698d4cd
4d9e689
a9aa30e
 
172038e
041bd28
18fbeec
041bd28
 
172038e
 
698d4cd
 
 
a9aa30e
 
 
 
a4f881b
e18ae6e
041bd28
a9aa30e
 
 
 
041bd28
 
a9aa30e
 
 
 
041bd28
 
 
18fbeec
a9aa30e
041bd28
 
 
 
 
18fbeec
041bd28
 
 
 
 
 
 
 
 
 
 
 
 
 
a9aa30e
 
041bd28
 
a9aa30e
041bd28
a9aa30e
 
 
 
041bd28
 
 
a9aa30e
041bd28
 
 
 
2f15cbe
a9aa30e
041bd28
 
 
 
698d4cd
8a09658
041bd28
 
 
 
e18ae6e
a9aa30e
 
 
 
 
 
 
 
 
041bd28
a4f881b
a9aa30e
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
import os
import io
import tempfile
import gradio as gr
from dotenv import load_dotenv
import torch
from scipy.io.wavfile import write
from diffusers import DiffusionPipeline
from transformers import pipeline
from pathlib import Path
from PIL import Image

import spaces  

load_dotenv()
hf_token = os.getenv("HF_TKN")

# Determine if we have access to a GPU
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
device_id = 0 if torch.cuda.is_available() else -1

# Initialize the image captioning pipeline
captioning_pipeline = pipeline(
    "image-to-text",
    model="nlpconnect/vit-gpt2-image-captioning",
    device=device_id
)

# Initialize the text-to-audio pipeline
pipe = DiffusionPipeline.from_pretrained(
    "cvssp/audioldm2",
    use_auth_token=hf_token
)
pipe.to(device)

@spaces.GPU(duration=120)
def analyze_image_with_free_model(image_file: bytes):
    """
    Analyze the uploaded image using the ViT-GPT2 image captioning pipeline.
    
    :param image_file: Binary content of the uploaded image.
    :return: A tuple (caption, error_flag).
             caption (str) - The generated caption or error message.
             error_flag (bool) - Indicates if an error occurred.
    """
    try:
        # Validate image input
        if not image_file:
            return "Error: No image data received.", True
        
        # Check if the file is a valid image
        try:
            Image.open(io.BytesIO(image_file)).verify()
        except Exception:
            return "Error: Invalid image file. Please upload a valid image.", True
        
        # Write the valid image to a temporary file for the pipeline
        with tempfile.NamedTemporaryFile(suffix=".jpg", delete=False) as temp_file:
            temp_file.write(image_file)
            temp_image_path = temp_file.name

        # Perform image captioning
        results = captioning_pipeline(temp_image_path)
        if not results or not isinstance(results, list):
            return "Error: Captioning pipeline returned invalid results.", True
        
        # Extract and clean up the generated caption
        caption = results[0].get("generated_text", "").strip()
        if not caption:
            return "No caption was generated by the model.", True
        
        return caption, False

    except Exception as e:
        return f"Error analyzing image: {e}", True

@spaces.GPU(duration=120)
def get_audioldm_from_caption(caption: str):
    """
    Generate an audio file (WAV) from a text caption using the AudioLDM2 pipeline.
    
    :param caption: The text prompt used to generate audio.
    :return: The path to the generated .wav file, or None if an error occurred.
    """
    try:
        # Move pipeline to GPU (if available)
        pipe.to(device)

        # Generate audio from text prompt
        audio_output = pipe(
            prompt=caption,
            num_inference_steps=50,
            guidance_scale=7.5
        )
        
        # Move pipeline back to CPU to free GPU memory
        pipe.to("cpu")

        # Extract the first audio sample
        audio = audio_output.audios[0]

        # Write the audio to a temporary WAV file
        with tempfile.NamedTemporaryFile(suffix=".wav", delete=False) as temp_wav:
            write(temp_wav.name, 16000, audio)
            return temp_wav.name

    except Exception as e:
        print(f"Error generating audio from caption: {e}")
        return None


# Custom CSS for styling the Gradio Blocks
css = """
#col-container{
    margin: 0 auto;
    max-width: 800px;
    }
"""

with gr.Blocks(css=css) as demo:
    with gr.Column(elem_id="col-container"):
        gr.HTML("""
        <h1 style="text-align: center;">🎶 Generate Sound Effects from Image</h1>
        <p style="text-align: center;">
            âš¡ Powered by <a href="https://bilsimaging.com" target="_blank">Bilsimaging</a>
        </p>
        """)

    gr.Markdown("""
    Welcome to this unique sound effect generator! This tool allows you to upload an image 
    and generate a descriptive caption and a corresponding sound effect, all using free, 
    open-source models on Hugging Face.

    **💡 How it works:**
    1. **Upload an image**: Choose an image that you'd like to analyze.
    2. **Generate Description**: Click on 'Generate Description' to get a textual 
       description of your uploaded image.
    3. **Generate Sound Effect**: Based on the image description, click on 
       'Generate Sound Effect' to create a sound effect that matches the image context.
    
    Enjoy the journey from visual to auditory sensation with just a few clicks!
    """)

    # Define Gradio interface elements
    image_upload = gr.File(label="Upload Image", type="binary")
    generate_description_button = gr.Button("Generate Description")
    caption_display = gr.Textbox(label="Image Description", interactive=False)
    generate_sound_button = gr.Button("Generate Sound Effect")
    audio_output = gr.Audio(label="Generated Sound Effect")

    gr.Markdown("""
    ## 👥 How You Can Contribute
    We welcome contributions and suggestions for improvements. Your feedback is invaluable 
    to the continuous enhancement of this application. 
    
    For support, questions, or to contribute, please contact us at 
    [[email protected]](mailto:[email protected]).
    
    Support our work and get involved by donating through 
    [Ko-fi](https://ko-fi.com/bilsimaging). - Bilel Aroua
    """)

    gr.Markdown("""
    ## 📢 Stay Connected
    This app is a testament to the creative possibilities that emerge when 
    technology meets art. Enjoy exploring the auditory landscape of your images!
    """)

    # Define the helper functions for Gradio event handlers
    def update_caption(image_file):
        description, error_flag = analyze_image_with_free_model(image_file)
        if error_flag:
            # In case of error, just return the error message
            return description
        return description

    def generate_sound(description):
        # Validate the description before generating audio
        if not description or description.startswith("Error"):
            return None
        audio_path = get_audioldm_from_caption(description)
        return audio_path

    # Wire the Gradio events to the functions
    generate_description_button.click(
        fn=update_caption,
        inputs=image_upload,
        outputs=caption_display
    )

    generate_sound_button.click(
        fn=generate_sound,
        inputs=caption_display,
        outputs=audio_output
    )

    gr.HTML(
        '<a href="https://visitorbadge.io/status?path=https%3A%2F%2Fhuggingface.co%2Fspaces%2FBils%2FGenerate-Sound-Effects-from-Image">'
        '<img src="https://api.visitorbadge.io/api/visitors?path='
        'https%3A%2F%2Fhuggingface.co%2Fspaces%2FBils%2FGenerate-Sound-Effects-from-Image&countColor=%23263759" '
        '/></a>'
    )

    # An extra placeholder if needed
    html = gr.HTML()

# Enable debug and optional share. On Spaces, 'share=True' is typically ignored.
demo.launch(debug=True, share=True)