Spaces:
Running
on
Zero
Running
on
Zero
File size: 7,124 Bytes
041bd28 a9aa30e 041bd28 698d4cd ccdc62f 041bd28 213e5d3 041bd28 a9aa30e 213e5d3 698d4cd 213e5d3 a9aa30e 041bd28 9c06b1a a9aa30e 041bd28 9c06b1a a9aa30e 041bd28 a9aa30e 041bd28 a9aa30e 2f15cbe a9aa30e 041bd28 a9aa30e 041bd28 ccdc62f a9aa30e ccdc62f a9aa30e 041bd28 a9aa30e 041bd28 81b2481 041bd28 81b2481 698d4cd a9aa30e 24da5c3 a9aa30e 041bd28 18fbeec 698d4cd 041bd28 a9aa30e 041bd28 a9aa30e 041bd28 a9aa30e 041bd28 4d9e689 041bd28 698d4cd 4d9e689 a9aa30e 172038e 041bd28 18fbeec 041bd28 172038e 698d4cd a9aa30e a4f881b e18ae6e 041bd28 a9aa30e 041bd28 a9aa30e 041bd28 18fbeec a9aa30e 041bd28 18fbeec 041bd28 a9aa30e 041bd28 a9aa30e 041bd28 a9aa30e 041bd28 a9aa30e 041bd28 2f15cbe a9aa30e 041bd28 698d4cd 8a09658 041bd28 e18ae6e a9aa30e 041bd28 a4f881b a9aa30e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 |
import os
import io
import tempfile
import gradio as gr
from dotenv import load_dotenv
import torch
from scipy.io.wavfile import write
from diffusers import DiffusionPipeline
from transformers import pipeline
from pathlib import Path
from PIL import Image
import spaces
load_dotenv()
hf_token = os.getenv("HF_TKN")
# Determine if we have access to a GPU
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
device_id = 0 if torch.cuda.is_available() else -1
# Initialize the image captioning pipeline
captioning_pipeline = pipeline(
"image-to-text",
model="nlpconnect/vit-gpt2-image-captioning",
device=device_id
)
# Initialize the text-to-audio pipeline
pipe = DiffusionPipeline.from_pretrained(
"cvssp/audioldm2",
use_auth_token=hf_token
)
pipe.to(device)
@spaces.GPU(duration=120)
def analyze_image_with_free_model(image_file: bytes):
"""
Analyze the uploaded image using the ViT-GPT2 image captioning pipeline.
:param image_file: Binary content of the uploaded image.
:return: A tuple (caption, error_flag).
caption (str) - The generated caption or error message.
error_flag (bool) - Indicates if an error occurred.
"""
try:
# Validate image input
if not image_file:
return "Error: No image data received.", True
# Check if the file is a valid image
try:
Image.open(io.BytesIO(image_file)).verify()
except Exception:
return "Error: Invalid image file. Please upload a valid image.", True
# Write the valid image to a temporary file for the pipeline
with tempfile.NamedTemporaryFile(suffix=".jpg", delete=False) as temp_file:
temp_file.write(image_file)
temp_image_path = temp_file.name
# Perform image captioning
results = captioning_pipeline(temp_image_path)
if not results or not isinstance(results, list):
return "Error: Captioning pipeline returned invalid results.", True
# Extract and clean up the generated caption
caption = results[0].get("generated_text", "").strip()
if not caption:
return "No caption was generated by the model.", True
return caption, False
except Exception as e:
return f"Error analyzing image: {e}", True
@spaces.GPU(duration=120)
def get_audioldm_from_caption(caption: str):
"""
Generate an audio file (WAV) from a text caption using the AudioLDM2 pipeline.
:param caption: The text prompt used to generate audio.
:return: The path to the generated .wav file, or None if an error occurred.
"""
try:
# Move pipeline to GPU (if available)
pipe.to(device)
# Generate audio from text prompt
audio_output = pipe(
prompt=caption,
num_inference_steps=50,
guidance_scale=7.5
)
# Move pipeline back to CPU to free GPU memory
pipe.to("cpu")
# Extract the first audio sample
audio = audio_output.audios[0]
# Write the audio to a temporary WAV file
with tempfile.NamedTemporaryFile(suffix=".wav", delete=False) as temp_wav:
write(temp_wav.name, 16000, audio)
return temp_wav.name
except Exception as e:
print(f"Error generating audio from caption: {e}")
return None
# Custom CSS for styling the Gradio Blocks
css = """
#col-container{
margin: 0 auto;
max-width: 800px;
}
"""
with gr.Blocks(css=css) as demo:
with gr.Column(elem_id="col-container"):
gr.HTML("""
<h1 style="text-align: center;">🎶 Generate Sound Effects from Image</h1>
<p style="text-align: center;">
âš¡ Powered by <a href="https://bilsimaging.com" target="_blank">Bilsimaging</a>
</p>
""")
gr.Markdown("""
Welcome to this unique sound effect generator! This tool allows you to upload an image
and generate a descriptive caption and a corresponding sound effect, all using free,
open-source models on Hugging Face.
**💡 How it works:**
1. **Upload an image**: Choose an image that you'd like to analyze.
2. **Generate Description**: Click on 'Generate Description' to get a textual
description of your uploaded image.
3. **Generate Sound Effect**: Based on the image description, click on
'Generate Sound Effect' to create a sound effect that matches the image context.
Enjoy the journey from visual to auditory sensation with just a few clicks!
""")
# Define Gradio interface elements
image_upload = gr.File(label="Upload Image", type="binary")
generate_description_button = gr.Button("Generate Description")
caption_display = gr.Textbox(label="Image Description", interactive=False)
generate_sound_button = gr.Button("Generate Sound Effect")
audio_output = gr.Audio(label="Generated Sound Effect")
gr.Markdown("""
## 👥 How You Can Contribute
We welcome contributions and suggestions for improvements. Your feedback is invaluable
to the continuous enhancement of this application.
For support, questions, or to contribute, please contact us at
[[email protected]](mailto:[email protected]).
Support our work and get involved by donating through
[Ko-fi](https://ko-fi.com/bilsimaging). - Bilel Aroua
""")
gr.Markdown("""
## 📢 Stay Connected
This app is a testament to the creative possibilities that emerge when
technology meets art. Enjoy exploring the auditory landscape of your images!
""")
# Define the helper functions for Gradio event handlers
def update_caption(image_file):
description, error_flag = analyze_image_with_free_model(image_file)
if error_flag:
# In case of error, just return the error message
return description
return description
def generate_sound(description):
# Validate the description before generating audio
if not description or description.startswith("Error"):
return None
audio_path = get_audioldm_from_caption(description)
return audio_path
# Wire the Gradio events to the functions
generate_description_button.click(
fn=update_caption,
inputs=image_upload,
outputs=caption_display
)
generate_sound_button.click(
fn=generate_sound,
inputs=caption_display,
outputs=audio_output
)
gr.HTML(
'<a href="https://visitorbadge.io/status?path=https%3A%2F%2Fhuggingface.co%2Fspaces%2FBils%2FGenerate-Sound-Effects-from-Image">'
'<img src="https://api.visitorbadge.io/api/visitors?path='
'https%3A%2F%2Fhuggingface.co%2Fspaces%2FBils%2FGenerate-Sound-Effects-from-Image&countColor=%23263759" '
'/></a>'
)
# An extra placeholder if needed
html = gr.HTML()
# Enable debug and optional share. On Spaces, 'share=True' is typically ignored.
demo.launch(debug=True, share=True)
|