File size: 5,217 Bytes
ccdc62f
 
 
698d4cd
ccdc62f
81b2481
ccdc62f
 
213e5d3
 
ccdc62f
213e5d3
ccdc62f
213e5d3
698d4cd
ccdc62f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
213e5d3
ccdc62f
 
 
 
 
 
9c06b1a
ccdc62f
9c06b1a
ccdc62f
 
2f15cbe
ccdc62f
 
 
 
 
18fbeec
ccdc62f
 
 
18fbeec
ccdc62f
 
81b2481
ccdc62f
81b2481
698d4cd
ccdc62f
 
24da5c3
ccdc62f
 
 
 
 
 
18fbeec
698d4cd
ccdc62f
 
 
 
 
 
 
 
 
4d9e689
ccdc62f
698d4cd
ccdc62f
 
 
 
 
4d9e689
ccdc62f
172038e
ccdc62f
 
18fbeec
ccdc62f
 
 
 
 
172038e
 
698d4cd
 
 
ccdc62f
 
 
 
a4f881b
ccdc62f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e18ae6e
ccdc62f
 
 
 
 
 
18fbeec
ccdc62f
 
 
 
 
 
18fbeec
ccdc62f
 
 
 
 
 
 
2f15cbe
ccdc62f
 
 
 
 
698d4cd
8a09658
ccdc62f
 
 
 
e18ae6e
a4f881b
ccdc62f
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
import io
from pathlib import Path
from typing import Tuple, Optional
import gradio as gr
import numpy as np
import torch
from PIL import Image
from dotenv import load_dotenv
from diffusers import DiffusionPipeline
from transformers import pipeline
from huggingface_hub import login

# Load environment variables
load_dotenv()
hf_token = os.getenv("HF_TKN")
if hf_token:
    login(token=hf_token)

# Device configuration
device = "cuda" if torch.cuda.is_available() else "cpu"
torch_dtype = torch.float16 if torch.cuda.is_available() else torch.float32

# Load models
@spaces.GPU
def load_models():
    """Load both models with proper device placement"""
    caption_pipe = pipeline(
        "image-to-text",
        model="nlpconnect/vit-gpt2-image-captioning",
        device=device
    )

    audio_pipe = DiffusionPipeline.from_pretrained(
        "cvssp/audioldm2",
        token=hf_token,
        torch_dtype=torch_dtype
    )
    return caption_pipe, audio_pipe

caption_pipe, audio_pipe = load_models()

def analyze_image(image_bytes: bytes) -> Tuple[str, bool]:
    """Generate caption from image bytes with enhanced error handling"""
    try:
        image = Image.open(io.BytesIO(image_bytes))
        if image.mode != "RGB":
            image = image.convert("RGB")
            
        results = caption_pipe(image)
        
        if not results or not isinstance(results, list):
            return "Error: Invalid response from caption model", True
            
        caption = results[0].get("generated_text", "").strip()
        return caption or "No caption generated", not bool(caption)
        
    except Exception as e:
        return f"Image processing error: {str(e)}", True

@spaces.GPU(duration=120)
def generate_audio(caption: str) -> Optional[Tuple[int, np.ndarray]]:
    """Generate audio from caption with resource management"""
    try:
        # Device management with context
        original_device = next(audio_pipe.parameters()).device
        audio_pipe.to(device)
        
        # Generation with progress awareness
        audio = audio_pipe(
            prompt=caption,
            num_inference_steps=50,
            guidance_scale=7.5,
            audio_length_in_s=5.0  # Keep audio generation short
        ).audios[0]
        
        # Post-processing
        audio = audio.squeeze()  # Handle mono channel
        audio = np.clip(audio, -1, 1)  # Ensure valid range
        return (16000, audio)
        
    except Exception as e:
        print(f"Audio generation error: {str(e)}")
        return None
        
    finally:
        audio_pipe.to(original_device)
        if torch.cuda.is_available():
            torch.cuda.empty_cache()

# UI Components
css = """
#col-container {
    max-width: 800px; 
    margin: 0 auto;
}
.disclaimer {
    font-size: 0.9em; 
    color: #666;
}
"""

with gr.Blocks(css=css) as demo:
    with gr.Column(elem_id="col-container"):
        gr.HTML("""
            <h1 style="text-align: center;">🎶 Image to Sound Effect Generator</h1>
            <p style="text-align: center;">
                ⚡ Powered by <a href="https://bilsimaging.com" target="_blank">Bilsimaging</a>
            </p>
        """)
        
        with gr.Row():
            image_input = gr.Image(type="filepath", label="Upload Image")
            caption_output = gr.Textbox(label="Generated Description", interactive=False)
        
        with gr.Row():
            generate_btn = gr.Button("Generate Description", variant="primary")
            audio_output = gr.Audio(label="Generated Sound", interactive=False)
            sound_btn = gr.Button("Generate Sound", variant="secondary")
        
        gr.Examples(
            examples=[str(Path(__file__).parent / "examples" / f) for f in ["storm.jpg", "city.jpg"]],
            inputs=image_input,
            outputs=[caption_output, audio_output],
            fn=lambda x: (analyze_image(Path(x).read_bytes())[0], None),
            cache_examples=True
        )

        gr.Markdown("### 🛠️ Usage Tips")
        gr.Markdown("""
            - Use clear, high-contrast images for best results
            - Complex scenes may require multiple generations
            - Keep sound generation under 10 seconds for quick results
        """)

        gr.Markdown("### ⚠️ Disclaimer", elem_classes="disclaimer")
        gr.Markdown("""
            Generated content may not always be accurate. Use at your own discretion.
            [Privacy Policy](https://bilsimaging.com/privacy) | 
            [Terms of Service](https://bilsimaging.com/terms)
        """)

    # Event handling
    generate_btn.click(
        fn=lambda x: analyze_image(Path(x).read_bytes())[0],
        inputs=image_input,
        outputs=caption_output,
        api_name="describe"
    )

    sound_btn.click(
        fn=generate_audio,
        inputs=caption_output,
        outputs=audio_output,
        api_name="generate_sound"
    )

    # Input validation
    image_input.change(
        fn=lambda: [gr.update(value=""), gr.update(value=None)],
        outputs=[caption_output, audio_output]
    )

if __name__ == "__main__":
    demo.launch(server_name="0.0.0.0" if os.getenv("SPACE_ID") else "127.0.0.1")