Spaces:
Running
on
Zero
Running
on
Zero
File size: 8,974 Bytes
4d9e689 2019ee0 213e5d3 81b2481 4d9e689 213e5d3 4d9e689 213e5d3 4d9e689 aec51c9 213e5d3 4d9e689 213e5d3 4d9e689 213e5d3 4d9e689 213e5d3 4d9e689 213e5d3 4d9e689 24da5c3 213e5d3 4d9e689 81b2481 4d9e689 213e5d3 4d9e689 213e5d3 4d9e689 213e5d3 4d9e689 213e5d3 81b2481 4d9e689 81b2481 213e5d3 4d9e689 24da5c3 4d9e689 3229fa2 4d9e689 81b2481 2019ee0 4d9e689 213e5d3 4d9e689 172038e 4d9e689 172038e 4d9e689 213e5d3 4d9e689 213e5d3 4d9e689 213e5d3 4d9e689 213e5d3 4d9e689 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 |
import gradio as gr
import os
import tempfile
import torch
import numpy as np
from scipy.io.wavfile import write
from dotenv import load_dotenv
from diffusers import DiffusionPipeline
from transformers import pipeline
from PIL import Image
import io
from pydub import AudioSegment
from typing import List
import spaces
# Load environment variables
load_dotenv()
HF_TOKEN = os.getenv("HF_TKN")
# Device configuration
device = "cuda" if torch.cuda.is_available() else "cpu"
# Initialize models
@gr.cache()
def load_caption_model():
return pipeline(
"image-to-text",
model="Salesforce/blip-image-captioning-base",
device=device
)
@gr.cache()
def load_audio_model():
pipe = DiffusionPipeline.from_pretrained(
"cvssp/audioldm2",
use_auth_token=HF_TOKEN
)
return pipe
caption_pipe = load_caption_model()
audio_pipe = load_audio_model().to(device)
@spaces.GPU(duration=120)
def analyze_image(image_file):
"""Generate caption from image with validation"""
try:
# Validate image
try:
image = Image.open(io.BytesIO(image_file))
image.verify()
image = Image.open(io.BytesIO(image_file))
except Exception as e:
raise ValueError(f"Invalid image file: {str(e)}")
results = caption_pipe(image)
if not results or not isinstance(results, list):
raise RuntimeError("No caption generated")
caption = results[0].get("generated_text", "").strip()
if not caption:
raise RuntimeError("Empty caption generated")
return caption
except Exception as e:
raise gr.Error(f"Image processing error: {str(e)}")
@spaces.GPU(duration=120)
def generate_audio(prompt: str, num_steps=100, guidance_scale=7.5):
"""Generate audio from single prompt"""
try:
if not prompt or len(prompt) < 10:
raise ValueError("Prompt must be at least 10 characters")
with torch.inference_mode():
audio = audio_pipe(
prompt=prompt,
num_inference_steps=int(num_steps),
guidance_scale=guidance_scale,
audio_length_in_s=10
).audios[0]
with tempfile.NamedTemporaryFile(suffix=".wav", delete=False) as tmpfile:
write(tmpfile.name, 16000, audio)
return tmpfile.name
except Exception as e:
raise gr.Error(f"Audio generation error: {str(e)}")
@spaces.GPU(duration=120)
def blend_audios(audio_files: List[str]) -> str:
"""Mix multiple audio files into one"""
try:
if not audio_files:
raise ValueError("No audio files to blend")
# Load first audio to get base parameters
base_audio = AudioSegment.from_wav(audio_files[0])
mixed = base_audio
# Mix subsequent tracks
for file in audio_files[1:]:
track = AudioSegment.from_wav(file)
if len(track) > len(mixed):
mixed = mixed.overlay(track[:len(mixed)])
else:
mixed = mixed.overlay(track)
# Export mixed audio
with tempfile.NamedTemporaryFile(suffix=".wav", delete=False) as tmpfile:
mixed.export(tmpfile.name, format="wav")
return tmpfile.name
except Exception as e:
raise gr.Error(f"Audio mixing error: {str(e)}")
def process_inputs(input_choice, image_file, *prompts):
"""Handle both image and text input modes"""
try:
# Filter empty prompts
valid_prompts = [p.strip() for p in prompts if p.strip()]
if input_choice == "Image":
if not image_file:
raise gr.Error("Please upload an image")
main_prompt = analyze_image(image_file)
valid_prompts = [main_prompt] + valid_prompts
else:
if not valid_prompts:
raise gr.Error("Please enter at least one text prompt")
# Generate audio for each prompt
audio_files = []
for idx, prompt in enumerate(valid_prompts):
audio_path = generate_audio(prompt)
audio_files.append(audio_path)
# Blend all audio files
final_audio = blend_audios(audio_files)
return valid_prompts, final_audio, audio_files
except Exception as e:
raise gr.Error(str(e))
# Gradio interface
css = """
#main-container { max-width: 800px; margin: 0 auto; }
.dark { background: #1a1a1a; }
.prompt-box { margin-bottom: 10px; }
.audio-track { margin: 5px 0; }
"""
with gr.Blocks(css=css, theme=gr.themes.Default(primary_hue="emerald")) as app:
with gr.Column(elem_id="main-container"):
gr.Markdown("""
# 🎨 Image to Sound Generator
Transform visual content or text prompts into mixed sound effects!
""")
# Input Mode Selector
input_choice = gr.Radio(
choices=["Image", "Text"],
value="Image",
label="Input Mode",
interactive=True
)
# Image Input Section
with gr.Row(visible=True) as image_row:
image_input = gr.Image(type="filepath", label="Upload Image")
# Text Input Section
with gr.Column(visible=False) as text_inputs_col:
prompt_components = [gr.Textbox(label=f"Sound Effect {i+1}", lines=2) for i in range(3)]
add_prompt_btn = gr.Button("Add Another Prompt", variant="secondary")
# Dynamic prompt management
current_prompts = gr.State(value=3)
def add_prompt(current_count):
new_count = current_count + 1
new_prompt = gr.Textbox(label=f"Sound Effect {new_count}", lines=2, visible=True)
return [new_count] + [new_prompt] + [gr.update(visible=True)]*(new_count)
add_prompt_btn.click(
fn=add_prompt,
inputs=current_prompts,
outputs=[current_prompts] + prompt_components + [text_inputs_col]
)
# Toggle between image/text inputs
def toggle_inputs(choice):
if choice == "Image":
return [gr.update(visible=True), gr.update(visible=False)]
return [gr.update(visible=False), gr.update(visible=True)]
input_choice.change(
fn=toggle_inputs,
inputs=input_choice,
outputs=[image_row, text_inputs_col]
)
# Generation Controls
with gr.Accordion("Advanced Settings", open=False):
steps_slider = gr.Slider(10, 200, 100, label="Generation Steps")
guidance_slider = gr.Slider(1.0, 15.0, 7.5, label="Guidance Scale")
generate_btn = gr.Button("Generate Mixed Sound", variant="primary")
# Outputs
with gr.Column():
gr.Markdown("### Generation Results")
prompt_display = gr.JSON(label="Used Prompts")
final_audio = gr.Audio(label="Blended Sound Effect", interactive=False)
with gr.Accordion("Individual Tracks", open=False):
track_components = [gr.Audio(visible=False) for _ in range(5)]
# Examples
gr.Examples(
examples=[
["examples/storm.jpg", "A dramatic thunderstorm", "Heavy rain pouring", "Distant rumble"],
[None, "Clock ticking", "Crowd murmuring", "Footsteps on concrete"]
],
inputs=[image_input] + prompt_components[:2],
outputs=[prompt_display, final_audio],
fn=lambda *x: process_inputs("Image", *x),
cache_examples=True
)
# Contribution Section
with gr.Column():
gr.Markdown("""
## 👥 How You Can Contribute
We welcome contributions! Contact us at [[email protected]](mailto:[email protected]).
Support us on [Ko-fi](https://ko-fi.com/bilsimaging). - Bilel Aroua
""")
gr.HTML("""
<div style="text-align: center;">
<a href="https://visitorbadge.io/status?path=https://huggingface.co/spaces/Bils/Generate-Sound-Effects-from-Image">
<img src="https://api.visitorbadge.io/api/visitors?path=https://huggingface.co/spaces/Bils/Generate-Sound-Effects-from-Image&countColor=%23263759" />
</a>
</div>
""")
# Footer
gr.Markdown("""
---
[GitHub Repository](https://github.com/bilsimaging/Imaginesound)*
""")
# Event handling
generate_btn.click(
fn=process_inputs,
inputs=[input_choice, image_input] + prompt_components,
outputs=[prompt_display, final_audio, *track_components]
)
if __name__ == "__main__":
app.launch(debug=True, share=True) |