File size: 24,385 Bytes
cf8a522
4077883
8e1d297
92f45fe
2e98a93
 
e0405b6
1a0f22c
ee0c7bb
e1a5956
 
ce7c5e8
d2d6501
d3c5eab
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ca31f44
8e1d297
2989c23
c6d228e
d2d6501
5d07781
2989c23
d3c5eab
 
2989c23
d3c5eab
 
 
 
 
 
cda9adf
2989c23
cda9adf
2989c23
 
 
cda9adf
 
d2d6501
 
d3c5eab
d2d6501
c6d228e
 
d3c5eab
8e1d297
d3c5eab
501c91b
d3c5eab
 
 
 
501c91b
 
92f45fe
d3c5eab
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2989c23
d3c5eab
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
97150aa
cda9adf
d3c5eab
ce7c5e8
d3c5eab
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8e1d297
d3c5eab
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cda9adf
d3c5eab
 
 
 
 
 
 
 
 
cda9adf
d3c5eab
 
 
 
 
 
 
 
 
cda9adf
d3c5eab
 
 
 
 
 
 
cda9adf
d3c5eab
 
cda9adf
 
d3c5eab
cda9adf
d3c5eab
 
 
cda9adf
d3c5eab
 
 
cda9adf
d3c5eab
 
 
 
 
 
 
d204788
8e1d297
2989c23
7716c5c
e33d65b
d3c5eab
2989c23
d3c5eab
46ff202
 
cda9adf
d3c5eab
cda9adf
 
 
 
d3c5eab
 
cda9adf
 
 
46ff202
 
d3c5eab
46ff202
 
 
 
 
d3c5eab
0d4f4dd
d3c5eab
 
 
 
 
 
 
 
cda9adf
d3c5eab
3e9d890
 
2989c23
ce7c5e8
2989c23
d3c5eab
2989c23
ee0c7bb
d3c5eab
 
 
ee0c7bb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cda9adf
ee0c7bb
 
 
 
cda9adf
 
2989c23
ee0c7bb
2989c23
ee0c7bb
2989c23
ee0c7bb
 
2989c23
 
ee0c7bb
 
 
 
 
 
 
 
 
 
 
 
 
cda9adf
ee0c7bb
 
 
 
cda9adf
ee0c7bb
 
 
 
 
 
 
 
 
 
cda9adf
 
 
2989c23
d3c5eab
ee0c7bb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d3c5eab
2989c23
d3c5eab
 
 
 
 
 
 
2989c23
d3c5eab
 
 
 
 
 
 
 
 
 
 
 
cda9adf
d3c5eab
 
 
 
 
 
 
 
 
 
 
 
 
 
 
97150aa
cda9adf
d3c5eab
46ff202
d3c5eab
46ff202
2989c23
 
 
d3c5eab
cda9adf
 
d3c5eab
 
cda9adf
d3c5eab
ee0c7bb
 
2989c23
 
 
 
 
 
d3c5eab
2989c23
ee0c7bb
 
 
 
d3c5eab
2989c23
d3c5eab
2989c23
d3c5eab
cda9adf
2989c23
d3c5eab
 
 
 
 
2989c23
 
 
d3c5eab
 
 
 
2989c23
 
d3c5eab
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
import os
import io
import streamlit as st
import docx
import docx2txt
import tempfile
import time
import re
import math
import concurrent.futures
from functools import lru_cache
from transformers import pipeline

# Set page title and hide sidebar
st.set_page_config(
    page_title="Resume-Google Job Match Analyzer",
    initial_sidebar_state="collapsed"
)

# Hide sidebar completely with custom CSS
st.markdown("""
<style>
    [data-testid="collapsedControl"] {display: none;}
    section[data-testid="stSidebar"] {display: none;}
</style>
""", unsafe_allow_html=True)

# Pre-defined company description for Google
GOOGLE_DESCRIPTION = """Google LLC, a global leader in technology and innovation, specializes in internet services, cloud computing, artificial intelligence, and software development. As part of Alphabet Inc., Google seeks candidates with strong problem-solving skills, adaptability, and collaboration abilities. Technical roles require proficiency in programming languages such as Python, Java, C++, Go, or JavaScript, with expertise in data structures, algorithms, and system design. Additionally, skills in AI, cybersecurity, UX/UI design, and digital marketing are highly valued. Google fosters a culture of innovation, expecting candidates to demonstrate creativity, analytical thinking, and a passion for cutting-edge technology."""

#####################################
# Preload Models
#####################################
@st.cache_resource(show_spinner=True)
def load_models():
    """Load models at startup"""
    with st.spinner("Loading AI models... This may take a minute on first run."):
        models = {}
        # Use bart-base for summarization
        models['summarizer'] = pipeline(
            "summarization", 
            model="facebook/bart-base", 
            max_length=100,
            truncation=True
        )
        
        # Load model for evaluation
        models['evaluator'] = pipeline(
            "text2text-generation", 
            model="google-t5/t5-small",
            max_length=300
        )
        
        return models

# Preload models immediately when app starts
models = load_models()

#####################################
# Function: Extract Text from File
#####################################
@st.cache_data(show_spinner=False)
def extract_text_from_file(file_obj):
    """
    Extract text from .docx and .doc files.
    Returns the extracted text or an error message if extraction fails.
    """
    filename = file_obj.name
    ext = os.path.splitext(filename)[1].lower()
    text = ""

    if ext == ".docx":
        try:
            document = docx.Document(file_obj)
            text = "\n".join(para.text for para in document.paragraphs if para.text.strip())
        except Exception as e:
            text = f"Error processing DOCX file: {e}"
    elif ext == ".doc":
        try:
            # For .doc files, we need to save to a temp file
            with tempfile.NamedTemporaryFile(delete=False, suffix='.doc') as temp_file:
                temp_file.write(file_obj.getvalue())
                temp_path = temp_file.name
        
            # Use docx2txt which is generally faster
            try:
                text = docx2txt.process(temp_path)
            except Exception:
                text = "Could not process .doc file. Please convert to .docx format."
        
            # Clean up temp file
            os.unlink(temp_path)
        except Exception as e:
            text = f"Error processing DOC file: {e}"
    elif ext == ".txt":
        try:
            text = file_obj.getvalue().decode("utf-8")
        except Exception as e:
            text = f"Error processing TXT file: {e}"
    else:
        text = "Unsupported file type. Please upload a .docx, .doc, or .txt file."
    
    # Limit text size for faster processing
    return text[:15000] if text else text

#####################################
# Functions for Information Extraction
#####################################

# Cache the extraction functions to avoid reprocessing
@lru_cache(maxsize=32)
def extract_name(text_start):
    """Extract candidate name from the beginning of resume text"""
    # Only use the first 500 characters to speed up processing
    lines = text_start.split('\n')
    
    # Check first few non-empty lines for potential names
    potential_name_lines = [line.strip() for line in lines[:5] if line.strip()]
    
    if potential_name_lines:
        # First line is often the name if it's short and doesn't contain common headers
        first_line = potential_name_lines[0]
        if 5 <= len(first_line) <= 40 and not any(x in first_line.lower() for x in ["resume", "cv", "curriculum", "vitae", "profile"]):
            return first_line
    
    # Look for lines that might contain a name
    for line in potential_name_lines[:3]:
        if len(line.split()) <= 4 and not any(x in line.lower() for x in ["address", "phone", "email", "resume", "cv"]):
            return line

    return "Unknown (please extract from resume)"

def extract_age(text):
    """Extract candidate age from resume text"""
    # Simplified: just check a few common patterns
    age_patterns = [
        r'age:?\s*(\d{1,2})',
        r'(\d{1,2})\s*years\s*old',
    ]
    
    text_lower = text.lower()
    for pattern in age_patterns:
        matches = re.search(pattern, text_lower)
        if matches:
            return matches.group(1)
    
    return "Not specified"

def extract_industry(text, base_summary):
    """Extract expected job industry from resume"""
    # Simplified industry keywords focused on the most common ones
    industry_keywords = {
        "technology": ["software", "programming", "developer", "IT", "tech", "computer"],
        "finance": ["banking", "financial", "accounting", "finance", "analyst"],
        "healthcare": ["medical", "health", "hospital", "clinical", "nurse", "doctor"],
        "education": ["teaching", "teacher", "professor", "education", "university"],
        "marketing": ["marketing", "advertising", "digital marketing", "social media"],
        "engineering": ["engineer", "engineering"],
        "data science": ["data science", "machine learning", "AI", "analytics"],
        "information systems": ["information systems", "ERP", "systems management"]
    }
    
    # Count occurrences of industry keywords - using the summary to speed up
    combined_text = base_summary.lower()
    
    counts = {}
    for industry, keywords in industry_keywords.items():
        counts[industry] = sum(combined_text.count(keyword.lower()) for keyword in keywords)
    
    # Get the industry with the highest count
    if counts:
        likely_industry = max(counts.items(), key=lambda x: x[1])
        if likely_industry[1] > 0:
            return likely_industry[0].capitalize()
    
    # Check for educational background that might indicate industry
    degrees = ["computer science", "business", "engineering", "medicine", "education", "finance", "marketing"]
    
    for degree in degrees:
        if degree in combined_text:
            return f"{degree.capitalize()}-related field"
    
    return "Not clearly specified"

def extract_skills_and_work(text):
    """Extract both skills and work experience at once to save processing time"""
    # Common skill categories - reduced keyword list for speed
    skill_categories = {
        "Programming": ["Python", "Java", "JavaScript", "HTML", "CSS", "SQL", "C++", "C#", "Go"],
        "Data Science": ["Machine Learning", "Data Analysis", "Statistics", "TensorFlow", "PyTorch", "AI", "Algorithms"],
        "Database": ["SQL", "MySQL", "MongoDB", "Database", "NoSQL", "PostgreSQL"],
        "Web Development": ["React", "Angular", "Node.js", "Frontend", "Backend", "Full-Stack"],
        "Software Development": ["Agile", "Scrum", "Git", "DevOps", "Docker", "System Design"],
        "Cloud": ["AWS", "Azure", "Google Cloud", "Cloud Computing"],
        "Security": ["Cybersecurity", "Network Security", "Encryption", "Security"],
        "Business": ["Project Management", "Business Analysis", "Leadership", "Teamwork"],
        "Design": ["UX/UI", "User Experience", "Design Thinking", "Adobe"]
    }
    
    # Work experience extraction
    work_headers = [
        "work experience", "professional experience", "employment history", 
        "work history", "experience"
    ]
    
    next_section_headers = [
        "education", "skills", "certifications", "projects", "achievements"
    ]
    
    # Process everything at once
    lines = text.split('\n')
    text_lower = text.lower()
    
    # Skills extraction
    found_skills = []
    for category, skills in skill_categories.items():
        category_skills = []
        for skill in skills:
            if skill.lower() in text_lower:
                category_skills.append(skill)
        
        if category_skills:
            found_skills.append(f"{category}: {', '.join(category_skills)}")
    
    # Work experience extraction - simplified approach
    work_section = []
    in_work_section = False
    
    for idx, line in enumerate(lines):
        line_lower = line.lower().strip()
        
        # Start of work section
        if not in_work_section:
            if any(header in line_lower for header in work_headers):
                in_work_section = True
                continue
        # End of work section
        elif in_work_section:
            if any(header in line_lower for header in next_section_headers):
                break
            
            if line.strip():
                work_section.append(line.strip())
    
    # Simplified work formatting
    if not work_section:
        work_experience = "Work experience not clearly identified"
    else:
        # Just take the first 5-7 lines of the work section as a summary
        work_lines = []
        company_count = 0
        current_company = ""
        
        for line in work_section:
            # New company entry often has a date
            if re.search(r'(19|20)\d{2}', line):
                company_count += 1
                if company_count <= 3:  # Limit to 3 most recent positions
                    current_company = line
                    work_lines.append(f"**{line}**")
                else:
                    break
            elif company_count <= 3 and len(work_lines) < 10:  # Limit total lines
                work_lines.append(line)
        
        work_experience = "\n• " + "\n• ".join(work_lines[:7]) if work_lines else "Work experience not clearly structured"
    
    skills_formatted = "\n• " + "\n• ".join(found_skills) if found_skills else "No specific technical skills clearly identified"
    
    return skills_formatted, work_experience

#####################################
# Function: Summarize Resume Text
#####################################
def summarize_resume_text(resume_text):
    """
    Generates a structured summary of the resume text
    """
    start_time = time.time()
    
    # First, generate a quick summary using pre-loaded model
    max_input_length = 1024  # Model limit
    
    # Only summarize the first portion of text for speed
    text_to_summarize = resume_text[:min(len(resume_text), max_input_length)]
    base_summary = models['summarizer'](text_to_summarize)[0]['summary_text']
    
    # Extract information in parallel where possible
    with concurrent.futures.ThreadPoolExecutor() as executor:
        # These can run in parallel
        name_future = executor.submit(extract_name, resume_text[:500])  # Only use start of text
        age_future = executor.submit(extract_age, resume_text)
        industry_future = executor.submit(extract_industry, resume_text, base_summary)
        skills_work_future = executor.submit(extract_skills_and_work, resume_text)
        
        # Get results
        name = name_future.result()
        age = age_future.result()
        industry = industry_future.result()
        skills, work_experience = skills_work_future.result()
    
    # Format the structured summary
    formatted_summary = f"Name: {name}\n"
    formatted_summary += f"Age: {age}\n"
    formatted_summary += f"Expected Job Industry: {industry}\n\n"
    formatted_summary += f"Previous Work Experience: {work_experience}\n\n"
    formatted_summary += f"Skills: {skills}"
    
    execution_time = time.time() - start_time
    
    return formatted_summary, execution_time

#####################################
# Function: Analyze Google Fit
#####################################
def analyze_google_fit(resume_summary):
    """
    Analyze how well the candidate fits Google's requirements.
    This uses the model to generate a natural language assessment with a realistic match score.
    """
    start_time = time.time()
    
    # First, calculate a realistic score based on keyword matching and balanced criteria
    google_keywords = {
        "technical_skills": ["python", "java", "c++", "javascript", "go", "sql", "algorithms", "data structures", "coding"],
        "advanced_tech": ["machine learning", "ai", "artificial intelligence", "cloud", "data science", "big data", "tensorflow", "deep learning"],
        "problem_solving": ["problem solving", "analytical", "critical thinking", "troubleshooting", "debugging", "optimization"],
        "innovation": ["innovation", "creative", "creativity", "design thinking", "research", "novel"],
        "soft_skills": ["team", "leadership", "collaboration", "communication", "agile", "project management"]
    }
    
    # Calculate realistic score with category weights
    category_weights = {
        "technical_skills": 0.35,
        "advanced_tech": 0.25,
        "problem_solving": 0.20,
        "innovation": 0.10,
        "soft_skills": 0.10
    }
    
    resume_lower = resume_summary.lower()
    category_scores = {}
    
    for category, keywords in google_keywords.items():
        # Count matches but cap at a reasonable level
        matches = sum(1 for keyword in keywords if keyword in resume_lower)
        max_matches = min(len(keywords), 5)  # Cap maximum possible matches
        
        # Calculate category score with diminishing returns
        # First few matches matter more than later ones
        if matches == 0:
            category_scores[category] = 0.0
        else:
            # Logarithmic scaling to prevent perfect scores and create more realistic distribution
            category_scores[category] = min(0.9, (math.log(matches + 1) / math.log(max_matches + 1)) * 0.9)
    
    # Calculate weighted score (max should be around 80-85% for an exceptional candidate)
    weighted_score = sum(score * category_weights[category] for category, score in category_scores.items())
    
    # Apply final curve to keep scores in a realistic range
    # Even exceptional candidates should rarely exceed 90%
    match_percentage = min(92, max(35, int(weighted_score * 100)))
    
    # Now create a focused prompt for generating the assessment
    strengths = [category.replace("_", " ") for category, score in category_scores.items() if score > 0.5]
    weaknesses = [category.replace("_", " ") for category, score in category_scores.items() if score < 0.4]
    
    # Extract key parts from resume for better context
    skills_match = re.search(r'Skills:.*?(?=\n\n|$)', resume_summary, re.DOTALL)
    skills_text = skills_match.group(0) if skills_match else ""
    
    work_match = re.search(r'Previous Work Experience:.*?(?=\n\n|$)', resume_summary, re.DOTALL)
    work_text = work_match.group(0) if work_match else ""
    
    prompt = f"""
Resume shows: {skills_text} {work_text}
Google needs: {GOOGLE_DESCRIPTION[:100]}
Analyze fit (strengths: {', '.join(strengths)}, areas for improvement: {', '.join(weaknesses)})
This candidate """
    
    try:
        # Generate the assessment
        assessment_results = models['evaluator'](
            prompt, 
            max_length=250,
            do_sample=True,
            temperature=0.4,
            num_return_sequences=2
        )
        
        # Find a good response
        assessment = None
        for result in assessment_results:
            text = result['generated_text'].strip()
            
            # Clean up obvious artifacts
            text = text.replace("This candidate This candidate", "This candidate")
            text = re.sub(r'(Resume shows:|Google needs:|Analyze fit|strengths:|areas for improvement:)', '', text)
            
            # Check if it looks valid
            if text.startswith("This candidate") and len(text) > 40:
                assessment = text
                break
        
        # If no good response was found, fall back to manual assessment
        if not assessment:
            assessment, _ = generate_manual_assessment(resume_summary, match_percentage)
            
    except Exception as e:
        # Fallback assessment with the calculated match percentage
        assessment, _ = generate_manual_assessment(resume_summary, match_percentage)
        print(f"Error in assessment generation: {e}")
    
    # Final cleanup to remove any remaining prompt artifacts
    assessment = re.sub(r'score: \d+%', '', assessment)  # Remove any existing score
    
    # Add the calculated score if not already present
    if "%" not in assessment:
        assessment += f" Overall, they have approximately a {match_percentage}% match with Google's requirements."
    
    execution_time = time.time() - start_time
    
    return assessment, match_percentage, execution_time

def generate_manual_assessment(resume_summary, match_percentage):
    """
    Generate a manual assessment based on keywords in the resume
    as a fallback when the model fails. Uses the pre-calculated match percentage.
    """
    # Define key Google skill categories
    key_skills = {
        "technical": ["python", "java", "javascript", "c++", "go", "programming", "coding", "software development"],
        "advanced_tech": ["machine learning", "ai", "artificial intelligence", "cloud", "data science", "big data"],
        "problem_solving": ["problem solving", "algorithms", "analytical", "critical thinking", "troubleshooting"],
        "innovation": ["innovation", "creative", "creativity", "design thinking"],
        "teamwork": ["team", "leadership", "collaboration", "communication", "agile"]
    }
    
    summary_lower = resume_summary.lower()
    
    # Count matches in each category
    strengths = []
    weaknesses = []
    
    for category, keywords in key_skills.items():
        matches = sum(1 for keyword in keywords if keyword in summary_lower)
        
        if matches >= 2:
            if category == "technical":
                strengths.append("strong technical skills")
            elif category == "advanced_tech":
                strengths.append("experience with advanced technologies")
            elif category == "problem_solving":
                strengths.append("problem-solving abilities")
            elif category == "innovation":
                strengths.append("innovative thinking")
            elif category == "teamwork":
                strengths.append("teamwork and collaboration skills")
        elif matches == 0:
            if category == "technical":
                weaknesses.append("technical programming skills")
            elif category == "advanced_tech":
                weaknesses.append("knowledge of advanced technologies")
            elif category == "problem_solving":
                weaknesses.append("demonstrated problem-solving capabilities")
            elif category == "innovation":
                weaknesses.append("innovation mindset")
            elif category == "teamwork":
                weaknesses.append("team collaboration experience")
    
    # Construct assessment
    assessment = f"This candidate demonstrates {', '.join(strengths[:2])} " if strengths else "This candidate "
    
    if len(strengths) > 2:
        assessment += f"as well as {strengths[2]}. "
    else:
        assessment += ". "
    
    if weaknesses:
        assessment += f"However, they could benefit from developing stronger {' and '.join(weaknesses[:2])}. "
    
    assessment += f"Based on the resume analysis, they appear to be a {match_percentage}% match for Google's requirements."
    
    return assessment, match_percentage

#####################################
# Main Streamlit Interface
#####################################
st.title("Google Resume Match Analyzer")
st.markdown(
    """
Upload your resume file in **.docx**, **.doc**, or **.txt** format to see how well you match with Google's hiring requirements. The app performs the following tasks:
1. Extracts text from your resume.
2. Uses AI to generate a structured candidate summary.
3. Analyzes how well your profile fits Google's requirements.
"""
)

# Display Google's requirements
with st.expander("Google's Requirements", expanded=False):
    st.write(GOOGLE_DESCRIPTION)

# File uploader
uploaded_file = st.file_uploader("Upload your resume (.docx, .doc, or .txt)", type=["docx", "doc", "txt"])

# Process button with optimized flow
if uploaded_file is not None and st.button("Analyze My Google Fit"):
    # Create a placeholder for the progress bar
    progress_bar = st.progress(0)
    status_text = st.empty()
    
    # Step 1: Extract text
    status_text.text("Step 1/3: Extracting text from resume...")
    resume_text = extract_text_from_file(uploaded_file)
    progress_bar.progress(25)
    
    if resume_text.startswith("Error") or resume_text == "Unsupported file type. Please upload a .docx, .doc, or .txt file.":
        st.error(resume_text)
    else:
        # Step 2: Generate summary
        status_text.text("Step 2/3: Analyzing resume and generating summary...")
        summary, summarization_time = summarize_resume_text(resume_text)
        progress_bar.progress(50)
        
        # Display summary
        st.subheader("Your Resume Summary")
        st.markdown(summary)
        st.info(f"Summary generated in {summarization_time:.2f} seconds")
        
        # Step 3: Generate Google fit assessment
        status_text.text("Step 3/3: Evaluating Google fit...")
        assessment, match_percentage, assessment_time = analyze_google_fit(summary)
        progress_bar.progress(100)
        
        # Clear status messages
        status_text.empty()
        
        # Display Google fit results
        st.subheader("Google Fit Assessment")

        # Display match percentage with appropriate color and emoji - with more realistic thresholds
        if match_percentage >= 85:
            st.success(f"**Overall Google Match Score:** {match_percentage}% 🌟")
        elif match_percentage >= 70:
            st.success(f"**Overall Google Match Score:** {match_percentage}% ✅")
        elif match_percentage >= 50:
            st.warning(f"**Overall Google Match Score:** {match_percentage}% ⚠️")
        else:
            st.error(f"**Overall Google Match Score:** {match_percentage}% 🔍")

# Display assessment
st.markdown("### Expert Assessment")
st.markdown(assessment)
        
        st.info(f"Assessment completed in {assessment_time:.2f} seconds")
        
        # Add potential next steps based on the match percentage
        st.subheader("Recommended Next Steps")
        
        if match_percentage >= 80:
            st.markdown("""
            - Consider applying for positions at Google that match your experience
            - Prepare for technical interviews by practicing algorithms and system design
            - Review Google's interview process and STAR method for behavioral questions
            """)
        elif match_percentage >= 60:
            st.markdown("""
            - Focus on strengthening your technical skills and advanced technology knowledge
            - Work on projects that demonstrate your skills in Google's key technology areas
            - Consider taking additional courses in algorithms, system design, or other Google focus areas
            """)
        else:
            st.markdown("""
            - Build more relevant experience in software development or technical areas
            - Develop projects showcasing problem-solving abilities and technical skills
            - Consider gaining more experience before applying, or target specific Google roles that better match your profile
            """)