Spaces:
Running
Running
File size: 7,921 Bytes
a5316e5 d563836 20742e4 a5316e5 edd2cf0 f80db47 6176ef8 ccf126e d563836 c8ce48e d563836 6176ef8 f4479ea 6176ef8 ccf126e bb9c09b ccf126e 1e09a50 ccf126e b1a0d53 b8df8bd b1a0d53 6f59e3c 6176ef8 ccf126e 6176ef8 b8df8bd b1a0d53 24390e2 f2c857b 24390e2 f80db47 24390e2 f2c857b 24390e2 f2c857b 24390e2 f80db47 24390e2 f2c857b 24390e2 f2c857b 24390e2 f80db47 29188eb 24390e2 f2c857b 24390e2 f2c857b 24390e2 f2c857b 3c63477 6176ef8 5282aca 1e09a50 f30d0ea 5282aca 1e09a50 b8df8bd 53e71ae 5282aca d3c40d6 6b0aebb 53e71ae 5282aca 1e09a50 5282aca 3cb6c3b 5282aca d3c40d6 6b0aebb a5316e5 ca9ec8b a5316e5 5282aca |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 |
import gradio as gr
from transformers import pipeline
import requests
from bs4 import BeautifulSoup
import random
classification_model = pipeline("text-classification", model="plantbert_text_classification_model", tokenizer="plantbert_text_classification_model")
mask_model = pipeline("fill-mask", model="plantbert_fill_mask_model", tokenizer="plantbert_fill_mask_model", top_k=14189)
def return_text(habitat_label, habitat_score, confidence):
if habitat_score*100 > confidence:
text = f"This vegetation plot belongs to the habitat {habitat_label} with the probability {habitat_score*100:.2f}%."
else:
text = f"We can't assign an habitat to this vegetation plot with a confidence of at least {confidence}%."
return text
def return_habitat_image(habitat_label, habitat_score, confidence):
floraveg_url = f"https://floraveg.eu/habitat/overview/{habitat_label}"
response = requests.get(floraveg_url)
if response.status_code == 200:
soup = BeautifulSoup(response.text, 'html.parser')
img_tag = soup.find('img', src=lambda x: x and x.startswith("https://files.ibot.cas.cz/cevs/images/syntaxa/thumbs/"))
if img_tag:
image_url = img_tag['src']
else:
image_url = "https://www.salonlfc.com/wp-content/uploads/2018/01/image-not-found-scaled-1150x647.png"
else:
image_url = "https://www.salonlfc.com/wp-content/uploads/2018/01/image-not-found-scaled-1150x647.png"
if habitat_score*100 < confidence:
image_url = "https://www.salonlfc.com/wp-content/uploads/2018/01/image-not-found-scaled-1150x647.png"
image_url = "https://www.commissionoceanindien.org/wp-content/uploads/2018/07/plantnet.jpg"
image = gr.Image(value=image_url)
return image
def return_species_image(species):
species = species.capitalize()
floraveg_url = f"https://floraveg.eu/taxon/overview/{species}"
response = requests.get(floraveg_url)
if response.status_code == 200:
soup = BeautifulSoup(response.text, 'html.parser')
img_tag = soup.find('img', src=lambda x: x and x.startswith("https://files.ibot.cas.cz/cevs/images/taxa/large/"))
if img_tag:
image_url = img_tag['src']
else:
image_url = "https://www.salonlfc.com/wp-content/uploads/2018/01/image-not-found-scaled-1150x647.png"
else:
image_url = "https://www.salonlfc.com/wp-content/uploads/2018/01/image-not-found-scaled-1150x647.png"
image_url = "https://www.commissionoceanindien.org/wp-content/uploads/2018/07/plantnet.jpg"
image = gr.Image(value=image_url)
return image
def gbif_normalization(text):
base = "https://api.gbif.org/v1"
api = "species"
function = "match"
parameter = "name"
url = f"{base}/{api}/{function}?{parameter}="
all_species = text.split(',')
all_species = [species.strip() for species in all_species]
species_gbif = []
for species in all_species:
url = url.replace(url.partition('name')[2], f'={species}')
r = requests.get(url)
r = r.json()
if 'species' in r:
r = r["species"]
else:
r = species
species_gbif.append(r)
text = ", ".join(species_gbif)
text = text.lower()
return text
def classification(text, typology, confidence):
text = gbif_normalization(text)
result = classification_model(text)
habitat_label = result[0]['label']
habitat_score = result[0]['score']
formatted_output = return_text(habitat_label, habitat_score, confidence)
image_output = return_habitat_image(habitat_label, habitat_score, confidence)
return formatted_output, image_output
def masking(text):
text = gbif_normalization(text)
max_score = 0
best_prediction = None
best_position = None
best_sentence = None
# Case for the first position
masked_text = "[MASK], " + ', '.join(text.split(', '))
i = 0
while True:
prediction = mask_model(masked_text)[i]
species = prediction['token_str']
if species in text.split(', '):
i+=1
else:
break
score = prediction['score']
sentence = prediction['sequence']
if score > max_score:
max_score = score
best_prediction = species
best_position = 0
best_sentence = sentence
# Loop through each position in the middle of the sentence
for i in range(1, len(text.split(', '))):
masked_text = ', '.join(text.split(', ')[:i]) + ', [MASK], ' + ', '.join(text.split(', ')[i:])
i = 0
while True:
prediction = mask_model(masked_text)[i]
species = prediction['token_str']
if species in text.split(', '):
i+=1
else:
break
score = prediction['score']
sentence = prediction['sequence']
# Update best prediction and position if score is higher
if score > max_score:
max_score = score
best_prediction = species
best_position = i
best_sentence = sentence
# Case for the last position
masked_text = ', '.join(text.split(', ')) + ', [MASK]'
i = 0
while True:
prediction = mask_model(masked_text)[i]
species = prediction['token_str']
if species in text.split(', '):
i+=1
else:
break
score = prediction['score']
sentence = prediction['sequence']
if score > max_score:
max_score = score
best_prediction = species
best_position = len(text.split(', '))
best_sentence = sentence
text = f"The most likely missing species is {best_prediction} at position {best_position}.\nThe new vegetation plot is {best_sentence}."
image = return_species_image(best_prediction)
return text, image
with gr.Blocks() as demo:
gr.Markdown("""<h1 style="text-align: center;">Pl@ntBERT</h1>""")
with gr.Tab("Vegetation plot classification"):
gr.Markdown("""<h3 style="text-align: center;">Classification of vegetation plots!</h3>""")
with gr.Row():
with gr.Column():
species = gr.Textbox(lines=2, label="Species", placeholder="Enter a list of comma-separated binomial names here.")
typology = gr.Dropdown(["EUNIS"], value="EUNIS", label="Typology", info="Will add more typologies later!")
confidence = gr.Slider(0, 100, value=90, label="Confidence", info="Choose the level of confidence for the prediction.")
with gr.Column():
text_output_1 = gr.Textbox()
text_output_2 = gr.Image()
text_button = gr.Button("Classify")
gr.Markdown("""<h5 style="text-align: center;">An example of input</h5>""")
gr.Examples([["sparganium erectum, calystegia sepium, persicaria amphibia", "EUNIS", 90]], [species, typology, confidence], [text_output_1, text_output_2], classification, True)
with gr.Tab("Missing species finding"):
gr.Markdown("""<h3 style="text-align: center;">Finding the missing species!</h3>""")
with gr.Row():
species_2 = gr.Textbox(lines=2, label="Species", placeholder="Enter a list of comma-separated binomial names here.")
with gr.Column():
image_output_1 = gr.Textbox()
image_output_2 = gr.Image()
image_button = gr.Button("Find")
gr.Markdown("""<h5 style="text-align: center;">An example of input</h5>""")
gr.Examples([["vaccinium myrtillus, dryopteris dilatata, molinia caerulea"]], [species_2], [image_output_1, image_output_2], masking, True)
text_button.click(classification, inputs=[species, typology, confidence], outputs=[text_output_1, text_output_2])
image_button.click(masking, inputs=[species_2], outputs=[image_output_1, image_output_2])
demo.launch() |