Spaces:
Runtime error
Runtime error
File size: 1,139 Bytes
5f0082d 0014786 95c923f 0014786 9e0b2ba 320edad 9e0b2ba 320edad 9e0b2ba 320edad 9e0b2ba 320edad 9e0b2ba ce411ec 320edad acf4e33 320edad 9e0b2ba dd27c16 9e0b2ba 8861ba7 48b0590 9e0b2ba |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 |
from keras.models import load_model
from PIL import Image, ImageOps
import numpy as np
import gradio as gr
def greet(name):
return "Hello " + name + "!!"
def predict(img):
# Load the model
model = load_model('keras_model.h5')
# Create the array of the right shape to feed into the keras model
# The 'length' or number of images you can put into the array is
# determined by the first position in the shape tuple, in this case 1.
data = np.ndarray(shape=(1, 224, 224, 3), dtype=np.float32)
# Replace this with the path to your image
image = img
# image = Image.open('<IMAGE_PATH>')
#resize the image to a 224x224 with the same strategy as in TM2:
#resizing the image to be at least 224x224 and then cropping from the center
size = (224, 224)
image = ImageOps.fit(image, size)
#turn the image into a numpy array
data[0] = np.asarray(image)
# run the inference
prediction = model.predict(data)
gr.outputs.Label = open(labels.txt)
return prediction
iface = gr.Interface(fn=predict, inputs=gr.inputs.Image(), outputs="text")
iface.launch()
|