File size: 16,962 Bytes
15f3912 914f0c8 d853d5a 15f3912 d853d5a 15f3912 d853d5a 15f3912 99a69cc 914f0c8 3bf61c2 d853d5a 3bf61c2 d853d5a 15f3912 d853d5a 15f3912 d853d5a 15f3912 914f0c8 15f3912 d853d5a 15f3912 d853d5a 15f3912 d853d5a 3bf61c2 d853d5a 15f3912 914f0c8 15f3912 3bf61c2 d853d5a 15f3912 914f0c8 d853d5a 914f0c8 15f3912 d853d5a 15f3912 d853d5a 15f3912 d853d5a 15f3912 d853d5a 15f3912 d853d5a 15f3912 d853d5a e3a960d d853d5a 15f3912 d853d5a 3bf61c2 914f0c8 3bf61c2 d853d5a e3a960d 0f27135 e3a960d d853d5a e3a960d d853d5a 15f3912 d853d5a 0f27135 d853d5a 0f27135 e3a960d 0f27135 d853d5a 0f27135 d853d5a 0f27135 d853d5a 1cec83d d853d5a 0f27135 e3a960d 0f27135 e3a960d 0f27135 914f0c8 d853d5a 0f27135 d853d5a e3a960d 0f27135 d853d5a 0f27135 914f0c8 d853d5a 0f27135 d853d5a 0f27135 d853d5a 0f27135 d853d5a 0f27135 914f0c8 e3a960d 1cec83d d853d5a 914f0c8 d853d5a 914f0c8 d853d5a 914f0c8 d853d5a 914f0c8 1cec83d 914f0c8 d853d5a 914f0c8 1cec83d 914f0c8 d853d5a 914f0c8 15f3912 3bf61c2 15f3912 d853d5a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 |
import gradio as gr
import os
import torch
from langchain_community.vectorstores import FAISS, Chroma
from langchain_community.document_loaders import PyPDFLoader
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain.chains import ConversationalRetrievalChain
from langchain_community.embeddings import HuggingFaceEmbeddings
from langchain_community.llms import HuggingFaceEndpoint
from langchain.memory import ConversationBufferMemory
from langchain.retrievers import BM25Retriever, EnsembleRetriever
from langchain.chains.query_constructor.base import AttributeInfo
from langchain.chains import create_query_chain
from langchain.retrievers.self_query.base import SelfQueryRetriever
from langchain.chains.query_constructor.schema import FieldInfo
from langchain.retrievers.multi_query import MultiQueryRetriever
api_token = os.getenv("FirstToken")
# Available LLM models
list_llm = [
"meta-llama/Meta-Llama-3-8B-Instruct",
"mistralai/Mistral-7B-Instruct-v0.2",
"deepseek-ai/deepseek-llm-7b-chat"
]
list_llm_simple = [os.path.basename(llm) for llm in list_llm]
# -----------------------------------------------------------------------------
# Document Loading and Splitting
# -----------------------------------------------------------------------------
def load_doc(list_file_path):
"""Load and split PDF documents into chunks."""
loaders = [PyPDFLoader(x) for x in list_file_path]
pages = []
for loader in loaders:
pages.extend(loader.load())
text_splitter = RecursiveCharacterTextSplitter(
chunk_size=1024,
chunk_overlap=64
)
doc_splits = text_splitter.split_documents(pages)
return doc_splits
# -----------------------------------------------------------------------------
# Vector Database Creation (ChromaDB and FAISS)
# -----------------------------------------------------------------------------
def create_chromadb(splits, persist_directory="chroma_db"):
"""Create ChromaDB vector database from document splits."""
embeddings = HuggingFaceEmbeddings()
chromadb = Chroma.from_documents(
documents=splits,
embedding=embeddings,
persist_directory=persist_directory
)
chromadb.persist() # Ensure data is written to disk
return chromadb
def create_faissdb(splits):
"""Create FAISS vector database from document splits."""
embeddings = HuggingFaceEmbeddings()
faissdb = FAISS.from_documents(splits, embeddings)
return faissdb
# -----------------------------------------------------------------------------
# BM25 Retriever
# -----------------------------------------------------------------------------
def create_bm25_retriever(splits):
"""Create BM25 retriever from document splits."""
bm25_retriever = BM25Retriever.from_documents(splits)
bm25_retriever.k = 3 # Number of documents to retrieve
return bm25_retriever
# -----------------------------------------------------------------------------
# MultiQueryRetriever
# -----------------------------------------------------------------------------
def create_multi_query_retriever(llm, vector_db, num_queries=3):
"""
Create a MultiQueryRetriever.
Args:
llm: The language model to use for query generation.
vector_db: The vector database to retrieve from.
num_queries: The number of diverse queries to generate.
Returns:
A MultiQueryRetriever instance.
"""
retriever = MultiQueryRetriever.from_llm(
llm=llm, retriever=vector_db.as_retriever(),
output_key="answer",
memory_key="chat_history",
return_messages=True,
verbose=False
)
return retriever
# -----------------------------------------------------------------------------
# Ensemble Retriever (Combine VectorDB and BM25)
# -----------------------------------------------------------------------------
def create_ensemble_retriever(vector_db, bm25_retriever):
"""Create an ensemble retriever combining ChromaDB and BM25."""
ensemble_retriever = EnsembleRetriever(
retrievers=[vector_db.as_retriever(), bm25_retriever],
weights=[0.7, 0.3] # Adjust weights as needed
)
return ensemble_retriever
# -----------------------------------------------------------------------------
# Initialize Database
# -----------------------------------------------------------------------------
def initialize_database(list_file_obj, progress=gr.Progress()):
"""Initialize the document database."""
list_file_path = [x.name for x in list_file_obj if x is not None]
doc_splits = load_doc(list_file_path)
# Create vector databases and retrievers
chromadb = create_chromadb(doc_splits)
bm25_retriever = create_bm25_retriever(doc_splits)
# Create ensemble retriever
ensemble_retriever = create_ensemble_retriever(chromadb, bm25_retriever)
return ensemble_retriever, "Database created successfully!"
# -----------------------------------------------------------------------------
# Initialize LLM Chain
# -----------------------------------------------------------------------------
def initialize_llmchain(llm_model, temperature, max_tokens, top_k, retriever, progress=gr.Progress()):
"""Initialize the language model chain."""
llm = HuggingFaceEndpoint(
repo_id=llm_model,
huggingfacehub_api_token=api_token,
temperature=temperature,
max_new_tokens=max_tokens,
top_k=top_k,
task="text-generation"
)
memory = ConversationBufferMemory(
memory_key="chat_history",
output_key='answer',
return_messages=True
)
qa_chain = ConversationalRetrievalChain.from_llm(
llm,
retriever=retriever,
chain_type="stuff",
memory=memory,
return_source_documents=True,
verbose=False,
)
return qa_chain
# -----------------------------------------------------------------------------
# Initialize LLM
# -----------------------------------------------------------------------------
def initialize_LLM(llm_option, llm_temperature, max_tokens, top_k, retriever, progress=gr.Progress()):
"""Initialize the Language Model."""
llm_name = list_llm[llm_option]
print("Selected LLM model:", llm_name)
qa_chain = initialize_llmchain(llm_name, llm_temperature, max_tokens, top_k, retriever, progress)
return qa_chain, "Analysis Assistant initialized and ready!"
# -----------------------------------------------------------------------------
# Chat History Formatting
# -----------------------------------------------------------------------------
def format_chat_history(message, chat_history):
"""Format chat history for the model."""
formatted_chat_history = []
for user_message, bot_message in chat_history:
formatted_chat_history.append(f"User: {user_message}")
formatted_chat_history.append(f"Assistant: {bot_message}")
return formatted_chat_history
# -----------------------------------------------------------------------------
# Conversation Function
# -----------------------------------------------------------------------------
def conversation(qa_chain, message, history, lang):
"""Handle conversation and document analysis."""
# Add language instruction to the message
if lang == "pt":
message += " (Responda em Português)"
else:
message += " (Respond in English)"
formatted_chat_history = format_chat_history(message, history)
response = qa_chain.invoke({"question": message, "chat_history": formatted_chat_history})
response_answer = response["answer"]
# Remove the language instruction from the chat history
if "(Respond" in message:
message = message.split(" (Respond")[0]
if response_answer.find("Helpful Answer:") != -1:
response_answer = response_answer.split("Helpful Answer:")[-1]
response_sources = response["source_documents"]
response_source1 = response_sources[0].page_content.strip()
response_source2 = response_sources[1].page_content.strip()
response_source3 = response_sources[2].page_content.strip()
response_source1_page = response_sources[0].metadata["page"] + 1
response_source2_page = response_sources[1].metadata["page"] + 1
response_source3_page = response_sources[2].metadata["page"] + 1
new_history = history + [(message, response_answer)]
return qa_chain, gr.update(value=""), new_history, response_source1, response_source1_page, response_source2, response_source2_page, response_source3, response_source3_page
# -----------------------------------------------------------------------------
# Gradio Demo
# -----------------------------------------------------------------------------
def demo():
"""Main demo application with enhanced layout."""
theme = gr.themes.Default(
primary_hue="indigo",
secondary_hue="blue",
neutral_hue="slate",
)
# Custom CSS for advanced layout
custom_css = """
.container {background: #ffffff; padding: 1rem; border-radius: 8px; box-shadow: 0 1px 3px rgba(0,0,0,0.1);}
.header {text-align: center; margin-bottom: 2rem;}
.header h1 {color: #1a365d; font-size: 2.5rem; margin-bottom: 0.5rem;}
.header p {color: #4a5568; font-size: 1.2rem;}
.section {margin-bottom: 1.5rem; padding: 1rem; background: #f8fafc; border-radius: 8px;}
.control-panel {margin-bottom: 1rem;}
.chat-area {background: white; padding: 1rem; border-radius: 8px;}
"""
with gr.Blocks(theme=theme, css=custom_css) as demo:
retriever = gr.State()
qa_chain = gr.State()
language = gr.State(value="en") # State for language control
# Header
gr.HTML(
"""
<div class="header">
<h1>MetroAssist AI</h1>
<p>Expert System for Metrology Report Analysis</p>
</div>
"""
)
with gr.Row():
# Left Column - Controls
with gr.Column(scale=1):
gr.Markdown("## Document Processing")
# File Upload Section
with gr.Column(elem_classes="section"):
gr.Markdown("### 📄 Upload Documents")
document = gr.Files(
label="Metrology Reports (PDF)",
file_count="multiple",
file_types=["pdf"]
)
db_btn = gr.Button("Process Documents")
db_progress = gr.Textbox(
value="Ready for documents",
label="Processing Status"
)
# Model Selection Section
with gr.Column(elem_classes="section"):
gr.Markdown("### 🤖 Model Configuration")
llm_btn = gr.Radio(
choices=list_llm_simple,
label="Select AI Model",
value=list_llm_simple[0],
type="index"
)
# Language selection button
language_btn = gr.Radio(
choices=["English", "Português"],
label="Response Language",
value="English",
type="value"
)
with gr.Accordion("Advanced Settings", open=False):
slider_temperature = gr.Slider(
minimum=0.01,
maximum=1.0,
value=0.5,
step=0.1,
label="Analysis Precision"
)
slider_maxtokens = gr.Slider(
minimum=128,
maximum=9192,
value=4096,
step=128,
label="Response Length"
)
slider_topk = gr.Slider(
minimum=1,
maximum=10,
value=3,
step=1,
label="Analysis Diversity"
)
qachain_btn = gr.Button("Initialize Assistant")
llm_progress = gr.Textbox(
value="Not initialized",
label="Assistant Status"
)
# Right Column - Chat Interface
with gr.Column(scale=2):
gr.Markdown("## Interactive Analysis")
# Features Section
with gr.Row():
with gr.Column():
gr.Markdown(
"""
### 📊 Capabilities
- Calibration Analysis
- Standards Compliance
- Uncertainty Evaluation
"""
)
with gr.Column():
gr.Markdown(
"""
### 💡 Best Practices
- Ask specific questions
- Include measurement context
- Specify standards
"""
)
# Chat Interface
with gr.Column(elem_classes="chat-area"):
chatbot = gr.Chatbot(
height=400,
label="Analysis Conversation"
)
with gr.Row():
msg = gr.Textbox(
placeholder="Ask about your metrology report...",
label="Query"
)
submit_btn = gr.Button("Send")
clear_btn = gr.ClearButton(
[msg, chatbot],
value="Clear"
)
# References Section
with gr.Accordion("Document References", open=False):
with gr.Row():
with gr.Column():
doc_source1 = gr.Textbox(label="Reference 1", lines=2)
source1_page = gr.Number(label="Page")
with gr.Column():
doc_source2 = gr.Textbox(label="Reference 2", lines=2)
source2_page = gr.Number(label="Page")
with gr.Column():
doc_source3 = gr.Textbox(label="Reference 3", lines=2)
source3_page = gr.Number(label="Page")
# Footer
gr.Markdown(
"""
---
### About MetroAssist AI
A specialized tool for metrology professionals, providing advanced analysis
of calibration certificates, measurement data, and technical standards compliance.
**Version 1.0** | © 2024 MetroAssist AI
"""
)
# Event Handlers
language_btn.change(
lambda x: "en" if x == "English" else "pt",
inputs=language_btn,
outputs=language
)
db_btn.click(
initialize_database,
inputs=[document],
outputs=[retriever, db_progress]
)
qachain_btn.click(
initialize_LLM,
inputs=[llm_btn, slider_temperature, slider_maxtokens, slider_topk, retriever],
outputs=[qa_chain, llm_progress]
).then(
lambda: [None, "", 0, "", 0, "", 0],
inputs=None,
outputs=[chatbot, doc_source1, source1_page, doc_source2, source2_page, doc_source3, source3_page],
queue=False
)
msg.submit(
conversation,
inputs=[qa_chain, msg, chatbot, language],
outputs=[qa_chain, msg, chatbot, doc_source1, source1_page, doc_source2, source2_page, doc_source3, source3_page],
queue=False
)
submit_btn.click(
conversation,
inputs=[qa_chain, msg, chatbot, language],
outputs=[qa_chain, msg, chatbot, doc_source1, source1_page, doc_source2, source2_page, doc_source3, source3_page],
queue=False
)
clear_btn.click(
lambda: [None, "", 0, "", 0, "", 0],
inputs=None,
outputs=[chatbot, doc_source1, source1_page, doc_source2, source2_page, doc_source3, source3_page],
queue=False
)
demo.queue().launch(debug=True)
if __name__ == "__main__":
demo()
|