File size: 16,962 Bytes
15f3912
 
914f0c8
d853d5a
15f3912
 
 
d853d5a
15f3912
d853d5a
 
 
 
 
 
 
15f3912
99a69cc
914f0c8
 
3bf61c2
d853d5a
3bf61c2
 
d853d5a
15f3912
 
d853d5a
 
 
15f3912
d853d5a
15f3912
 
 
 
 
914f0c8
 
 
15f3912
 
 
d853d5a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
15f3912
d853d5a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
15f3912
d853d5a
 
 
 
 
 
 
3bf61c2
 
 
 
 
 
 
 
d853d5a
15f3912
 
 
 
 
 
 
 
 
914f0c8
15f3912
 
 
 
 
3bf61c2
d853d5a
 
 
 
 
15f3912
914f0c8
d853d5a
914f0c8
15f3912
d853d5a
 
 
15f3912
d853d5a
15f3912
 
 
 
 
 
d853d5a
 
 
 
 
 
 
 
 
 
 
 
15f3912
 
 
d853d5a
 
 
 
 
15f3912
 
d853d5a
15f3912
 
 
 
 
 
 
 
 
d853d5a
e3a960d
d853d5a
 
 
15f3912
d853d5a
3bf61c2
 
 
914f0c8
3bf61c2
d853d5a
e3a960d
 
0f27135
 
 
 
 
 
 
e3a960d
d853d5a
e3a960d
d853d5a
15f3912
d853d5a
 
0f27135
 
 
 
 
 
 
 
 
d853d5a
0f27135
 
e3a960d
0f27135
d853d5a
0f27135
 
 
 
 
 
 
 
 
 
 
 
 
d853d5a
0f27135
 
 
 
 
 
 
 
 
d853d5a
 
1cec83d
 
 
 
 
 
d853d5a
0f27135
 
 
 
 
 
 
e3a960d
0f27135
 
 
 
 
 
e3a960d
0f27135
 
 
 
 
 
914f0c8
d853d5a
0f27135
 
 
 
 
d853d5a
e3a960d
 
0f27135
d853d5a
0f27135
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
914f0c8
d853d5a
0f27135
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d853d5a
0f27135
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d853d5a
 
0f27135
d853d5a
0f27135
 
 
914f0c8
e3a960d
1cec83d
 
 
 
 
d853d5a
914f0c8
 
 
d853d5a
914f0c8
d853d5a
914f0c8
 
d853d5a
914f0c8
 
 
 
 
 
 
 
 
 
1cec83d
914f0c8
 
 
d853d5a
914f0c8
 
1cec83d
914f0c8
 
 
d853d5a
914f0c8
 
 
 
 
 
15f3912
3bf61c2
15f3912
 
d853d5a
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
import gradio as gr
import os
import torch
from langchain_community.vectorstores import FAISS, Chroma
from langchain_community.document_loaders import PyPDFLoader
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain.chains import ConversationalRetrievalChain
from langchain_community.embeddings import HuggingFaceEmbeddings
from langchain_community.llms import HuggingFaceEndpoint
from langchain.memory import ConversationBufferMemory
from langchain.retrievers import BM25Retriever, EnsembleRetriever
from langchain.chains.query_constructor.base import AttributeInfo
from langchain.chains import create_query_chain
from langchain.retrievers.self_query.base import SelfQueryRetriever
from langchain.chains.query_constructor.schema import FieldInfo
from langchain.retrievers.multi_query import MultiQueryRetriever

api_token = os.getenv("FirstToken")

# Available LLM models
list_llm = [
    "meta-llama/Meta-Llama-3-8B-Instruct",
    "mistralai/Mistral-7B-Instruct-v0.2",
    "deepseek-ai/deepseek-llm-7b-chat"
]
list_llm_simple = [os.path.basename(llm) for llm in list_llm]

# -----------------------------------------------------------------------------
# Document Loading and Splitting
# -----------------------------------------------------------------------------
def load_doc(list_file_path):
    """Load and split PDF documents into chunks."""
    loaders = [PyPDFLoader(x) for x in list_file_path]
    pages = []
    for loader in loaders:
        pages.extend(loader.load())
    text_splitter = RecursiveCharacterTextSplitter(
        chunk_size=1024,
        chunk_overlap=64
    )
    doc_splits = text_splitter.split_documents(pages)
    return doc_splits

# -----------------------------------------------------------------------------
# Vector Database Creation (ChromaDB and FAISS)
# -----------------------------------------------------------------------------
def create_chromadb(splits, persist_directory="chroma_db"):
    """Create ChromaDB vector database from document splits."""
    embeddings = HuggingFaceEmbeddings()
    chromadb = Chroma.from_documents(
        documents=splits,
        embedding=embeddings,
        persist_directory=persist_directory
    )
    chromadb.persist()  # Ensure data is written to disk
    return chromadb

def create_faissdb(splits):
    """Create FAISS vector database from document splits."""
    embeddings = HuggingFaceEmbeddings()
    faissdb = FAISS.from_documents(splits, embeddings)
    return faissdb

# -----------------------------------------------------------------------------
# BM25 Retriever
# -----------------------------------------------------------------------------
def create_bm25_retriever(splits):
    """Create BM25 retriever from document splits."""
    bm25_retriever = BM25Retriever.from_documents(splits)
    bm25_retriever.k = 3  # Number of documents to retrieve
    return bm25_retriever

# -----------------------------------------------------------------------------
# MultiQueryRetriever
# -----------------------------------------------------------------------------
def create_multi_query_retriever(llm, vector_db, num_queries=3):
    """
    Create a MultiQueryRetriever.

    Args:
        llm: The language model to use for query generation.
        vector_db: The vector database to retrieve from.
        num_queries: The number of diverse queries to generate.

    Returns:
        A MultiQueryRetriever instance.
    """
    retriever = MultiQueryRetriever.from_llm(
        llm=llm, retriever=vector_db.as_retriever(),
        output_key="answer",
        memory_key="chat_history",
        return_messages=True,
        verbose=False
    )
    return retriever

# -----------------------------------------------------------------------------
# Ensemble Retriever (Combine VectorDB and BM25)
# -----------------------------------------------------------------------------
def create_ensemble_retriever(vector_db, bm25_retriever):
    """Create an ensemble retriever combining ChromaDB and BM25."""
    ensemble_retriever = EnsembleRetriever(
        retrievers=[vector_db.as_retriever(), bm25_retriever],
        weights=[0.7, 0.3]  # Adjust weights as needed
    )
    return ensemble_retriever

# -----------------------------------------------------------------------------
# Initialize Database
# -----------------------------------------------------------------------------
def initialize_database(list_file_obj, progress=gr.Progress()):
    """Initialize the document database."""
    list_file_path = [x.name for x in list_file_obj if x is not None]
    doc_splits = load_doc(list_file_path)

    # Create vector databases and retrievers
    chromadb = create_chromadb(doc_splits)
    bm25_retriever = create_bm25_retriever(doc_splits)

    # Create ensemble retriever
    ensemble_retriever = create_ensemble_retriever(chromadb, bm25_retriever)

    return ensemble_retriever, "Database created successfully!"

# -----------------------------------------------------------------------------
# Initialize LLM Chain
# -----------------------------------------------------------------------------
def initialize_llmchain(llm_model, temperature, max_tokens, top_k, retriever, progress=gr.Progress()):
    """Initialize the language model chain."""
    llm = HuggingFaceEndpoint(
        repo_id=llm_model,
        huggingfacehub_api_token=api_token,
        temperature=temperature,
        max_new_tokens=max_tokens,
        top_k=top_k,
        task="text-generation"
    )

    memory = ConversationBufferMemory(
        memory_key="chat_history",
        output_key='answer',
        return_messages=True
    )

    qa_chain = ConversationalRetrievalChain.from_llm(
        llm,
        retriever=retriever,
        chain_type="stuff",
        memory=memory,
        return_source_documents=True,
        verbose=False,
    )
    return qa_chain

# -----------------------------------------------------------------------------
# Initialize LLM
# -----------------------------------------------------------------------------
def initialize_LLM(llm_option, llm_temperature, max_tokens, top_k, retriever, progress=gr.Progress()):
    """Initialize the Language Model."""
    llm_name = list_llm[llm_option]
    print("Selected LLM model:", llm_name)
    qa_chain = initialize_llmchain(llm_name, llm_temperature, max_tokens, top_k, retriever, progress)
    return qa_chain, "Analysis Assistant initialized and ready!"

# -----------------------------------------------------------------------------
# Chat History Formatting
# -----------------------------------------------------------------------------
def format_chat_history(message, chat_history):
    """Format chat history for the model."""
    formatted_chat_history = []
    for user_message, bot_message in chat_history:
        formatted_chat_history.append(f"User: {user_message}")
        formatted_chat_history.append(f"Assistant: {bot_message}")
    return formatted_chat_history

# -----------------------------------------------------------------------------
# Conversation Function
# -----------------------------------------------------------------------------
def conversation(qa_chain, message, history, lang):
    """Handle conversation and document analysis."""

    # Add language instruction to the message
    if lang == "pt":
        message += " (Responda em Português)"
    else:
        message += " (Respond in English)"

    formatted_chat_history = format_chat_history(message, history)
    response = qa_chain.invoke({"question": message, "chat_history": formatted_chat_history})
    response_answer = response["answer"]

    # Remove the language instruction from the chat history
    if "(Respond" in message:
        message = message.split(" (Respond")[0]

    if response_answer.find("Helpful Answer:") != -1:
        response_answer = response_answer.split("Helpful Answer:")[-1]

    response_sources = response["source_documents"]
    response_source1 = response_sources[0].page_content.strip()
    response_source2 = response_sources[1].page_content.strip()
    response_source3 = response_sources[2].page_content.strip()
    response_source1_page = response_sources[0].metadata["page"] + 1
    response_source2_page = response_sources[1].metadata["page"] + 1
    response_source3_page = response_sources[2].metadata["page"] + 1
    new_history = history + [(message, response_answer)]

    return qa_chain, gr.update(value=""), new_history, response_source1, response_source1_page, response_source2, response_source2_page, response_source3, response_source3_page

# -----------------------------------------------------------------------------
# Gradio Demo
# -----------------------------------------------------------------------------
def demo():
    """Main demo application with enhanced layout."""
    theme = gr.themes.Default(
        primary_hue="indigo",
        secondary_hue="blue",
        neutral_hue="slate",
    )

    # Custom CSS for advanced layout
    custom_css = """
        .container {background: #ffffff; padding: 1rem; border-radius: 8px; box-shadow: 0 1px 3px rgba(0,0,0,0.1);}
        .header {text-align: center; margin-bottom: 2rem;}
        .header h1 {color: #1a365d; font-size: 2.5rem; margin-bottom: 0.5rem;}
        .header p {color: #4a5568; font-size: 1.2rem;}
        .section {margin-bottom: 1.5rem; padding: 1rem; background: #f8fafc; border-radius: 8px;}
        .control-panel {margin-bottom: 1rem;}
        .chat-area {background: white; padding: 1rem; border-radius: 8px;}
    """

    with gr.Blocks(theme=theme, css=custom_css) as demo:
        retriever = gr.State()
        qa_chain = gr.State()
        language = gr.State(value="en")  # State for language control

        # Header
        gr.HTML(
            """
            <div class="header">
                <h1>MetroAssist AI</h1>
                <p>Expert System for Metrology Report Analysis</p>
            </div>
            """
        )

        with gr.Row():
            # Left Column - Controls
            with gr.Column(scale=1):
                gr.Markdown("## Document Processing")

                # File Upload Section
                with gr.Column(elem_classes="section"):
                    gr.Markdown("### 📄 Upload Documents")
                    document = gr.Files(
                        label="Metrology Reports (PDF)",
                        file_count="multiple",
                        file_types=["pdf"]
                    )
                    db_btn = gr.Button("Process Documents")
                    db_progress = gr.Textbox(
                        value="Ready for documents",
                        label="Processing Status"
                    )

                # Model Selection Section
                with gr.Column(elem_classes="section"):
                    gr.Markdown("### 🤖 Model Configuration")
                    llm_btn = gr.Radio(
                        choices=list_llm_simple,
                        label="Select AI Model",
                        value=list_llm_simple[0],
                        type="index"
                    )

                    # Language selection button
                    language_btn = gr.Radio(
                        choices=["English", "Português"],
                        label="Response Language",
                        value="English",
                        type="value"
                    )

                    with gr.Accordion("Advanced Settings", open=False):
                        slider_temperature = gr.Slider(
                            minimum=0.01,
                            maximum=1.0,
                            value=0.5,
                            step=0.1,
                            label="Analysis Precision"
                        )
                        slider_maxtokens = gr.Slider(
                            minimum=128,
                            maximum=9192,
                            value=4096,
                            step=128,
                            label="Response Length"
                        )
                        slider_topk = gr.Slider(
                            minimum=1,
                            maximum=10,
                            value=3,
                            step=1,
                            label="Analysis Diversity"
                        )

                    qachain_btn = gr.Button("Initialize Assistant")
                    llm_progress = gr.Textbox(
                        value="Not initialized",
                        label="Assistant Status"
                    )

            # Right Column - Chat Interface
            with gr.Column(scale=2):
                gr.Markdown("## Interactive Analysis")

                # Features Section
                with gr.Row():
                    with gr.Column():
                        gr.Markdown(
                            """
                            ### 📊 Capabilities
                            - Calibration Analysis
                            - Standards Compliance
                            - Uncertainty Evaluation
                            """
                        )
                    with gr.Column():
                        gr.Markdown(
                            """
                            ### 💡 Best Practices
                            - Ask specific questions
                            - Include measurement context
                            - Specify standards
                            """
                        )

                # Chat Interface
                with gr.Column(elem_classes="chat-area"):
                    chatbot = gr.Chatbot(
                        height=400,
                        label="Analysis Conversation"
                    )
                    with gr.Row():
                        msg = gr.Textbox(
                            placeholder="Ask about your metrology report...",
                            label="Query"
                        )
                        submit_btn = gr.Button("Send")
                        clear_btn = gr.ClearButton(
                            [msg, chatbot],
                            value="Clear"
                        )

                # References Section
                with gr.Accordion("Document References", open=False):
                    with gr.Row():
                        with gr.Column():
                            doc_source1 = gr.Textbox(label="Reference 1", lines=2)
                            source1_page = gr.Number(label="Page")
                        with gr.Column():
                            doc_source2 = gr.Textbox(label="Reference 2", lines=2)
                            source2_page = gr.Number(label="Page")
                        with gr.Column():
                            doc_source3 = gr.Textbox(label="Reference 3", lines=2)
                            source3_page = gr.Number(label="Page")

        # Footer
        gr.Markdown(
            """
            ---
            ### About MetroAssist AI

            A specialized tool for metrology professionals, providing advanced analysis
            of calibration certificates, measurement data, and technical standards compliance.

            **Version 1.0** | © 2024 MetroAssist AI
            """
        )

        # Event Handlers
        language_btn.change(
            lambda x: "en" if x == "English" else "pt",
            inputs=language_btn,
            outputs=language
        )

        db_btn.click(
            initialize_database,
            inputs=[document],
            outputs=[retriever, db_progress]
        )

        qachain_btn.click(
            initialize_LLM,
            inputs=[llm_btn, slider_temperature, slider_maxtokens, slider_topk, retriever],
            outputs=[qa_chain, llm_progress]
        ).then(
            lambda: [None, "", 0, "", 0, "", 0],
            inputs=None,
            outputs=[chatbot, doc_source1, source1_page, doc_source2, source2_page, doc_source3, source3_page],
            queue=False
        )

        msg.submit(
            conversation,
            inputs=[qa_chain, msg, chatbot, language],
            outputs=[qa_chain, msg, chatbot, doc_source1, source1_page, doc_source2, source2_page, doc_source3, source3_page],
            queue=False
        )

        submit_btn.click(
            conversation,
            inputs=[qa_chain, msg, chatbot, language],
            outputs=[qa_chain, msg, chatbot, doc_source1, source1_page, doc_source2, source2_page, doc_source3, source3_page],
            queue=False
        )

        clear_btn.click(
            lambda: [None, "", 0, "", 0, "", 0],
            inputs=None,
            outputs=[chatbot, doc_source1, source1_page, doc_source2, source2_page, doc_source3, source3_page],
            queue=False
        )

    demo.queue().launch(debug=True)

if __name__ == "__main__":
    demo()