Spaces:
Runtime error
Runtime error
File size: 10,726 Bytes
d763e2a 78cc4b7 ee9ec43 9cbeac4 5affbbc 9cbeac4 5affbbc 2180e70 ee9ec43 2180e70 d763e2a 5affbbc cb9a228 5affbbc 465ab59 9cbeac4 2180e70 5affbbc 952088c 465ab59 2180e70 5affbbc cb9a228 5affbbc 2180e70 5affbbc 2180e70 5affbbc 2180e70 5affbbc 2180e70 5affbbc 6534dfb 5affbbc 2180e70 5affbbc 6534dfb 2180e70 5affbbc 2180e70 5affbbc 2180e70 5affbbc 2180e70 5affbbc 2180e70 5affbbc 2180e70 5affbbc 6534dfb 5affbbc 6534dfb 5affbbc 6534dfb 5affbbc 6534dfb 5affbbc 6534dfb 1ab11d4 b5fc718 1ab11d4 5affbbc 1ab11d4 5affbbc 1ab11d4 5affbbc 6534dfb 5affbbc b5fc718 5affbbc 6534dfb 465ab59 6534dfb 5affbbc 6534dfb ee9ec43 6534dfb 9cbeac4 465ab59 9cbeac4 6534dfb 9cbeac4 465ab59 9cbeac4 6534dfb 9cbeac4 6534dfb 9cbeac4 2180e70 9cbeac4 2180e70 465ab59 b351586 465ab59 b351586 465ab59 2180e70 6534dfb 465ab59 6534dfb 465ab59 6534dfb 9cbeac4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 |
import gradio as gr
import os
import pandas as pd
import matplotlib.pyplot as plt
import numpy as np
import nltk, spacy, gensim
from sklearn.decomposition import LatentDirichletAllocation
from sklearn.feature_extraction.text import CountVectorizer
from pprint import pprint
import matplotlib
matplotlib.use('agg')
def concat_comments(*kwargs):
return ['\n'.join(ele) for ele in zip(*kwargs)]
def sent_to_words(sentences):
for sentence in sentences:
yield(gensim.utils.simple_preprocess(str(sentence), deacc=True)) # deacc=True removes punctuations
def lemmatization(texts, allowed_postags=['NOUN', 'ADJ', 'VERB', 'ADV'], nlp=None): #'NOUN', 'ADJ', 'VERB', 'ADV'
texts_out = []
for sent in texts:
doc = nlp(" ".join(sent))
texts_out.append(" ".join([
token.lemma_ if token.lemma_ not in ['-PRON-'] else '' for token in doc if token.pos_ in allowed_postags
]))
return texts_out
def get_lda(n_components, n_top_subreddit_to_analyse, what_label_to_use):
df = pd.read_csv('./data/results.csv', index_col=0)
data = concat_comments(df.subreddit, df.sup_comment, df.comment)
data_words = list(sent_to_words(data))
if what_label_to_use == 'Use True label':
label = 'label'
else:
label = 'prediction'
if not spacy.util.is_package("en_core_web_sm"):
print('[x] en_core_web_sm not found, downloading...')
os.system("python -m spacy download en_core_web_sm")
print('[x] en_core_web_sm downloaded')
print('[x] Lemmatization begins')
nlp = spacy.load("en_core_web_sm", disable=["parser", "ner"])
data_lemmatized = lemmatization(data_words, allowed_postags=["NOUN", "ADJ"], nlp=nlp) #select noun and verb
print('[x] Vectorizing')
vectorizer = CountVectorizer(
analyzer='word',
min_df=10,
stop_words='english',
lowercase=True,
token_pattern='[a-zA-Z0-9]{3,}'
)
print('[x] Fitting vectorized data on lemmatization')
data_vectorized = vectorizer.fit_transform(data_lemmatized)
print('[x] Init LDA model')
lda_model = LatentDirichletAllocation(
n_components=n_components,
max_iter=10,
learning_method='online',
random_state=100,
batch_size=128,
evaluate_every = -1,
n_jobs = -1,
verbose=1,
)
print('[x] Fitting LDA model')
lda_output = lda_model.fit_transform(data_vectorized)
print(lda_model) # Model attributes
print('[x] Getting performances')
performances = lda_model.score(data_vectorized), lda_model.perplexity(data_vectorized)
# Log Likelyhood: Higher the better
print("Log Likelihood: ", performances[0])
# Perplexity: Lower the better. Perplexity = exp(-1. * log-likelihood per word)
print("Perplexity: ", performances[1])
print('[x] Check parameters if they look correct')
# See model parameters
pprint(lda_model.get_params())
# switching to the best model
best_lda_model = lda_model
print('[x] Getting LDA output')
lda_output = best_lda_model.transform(data_vectorized)
print('[x] Assigning topics')
topicnames = ["Topic" + str(i) for i in range(best_lda_model.n_components)]
docnames = ["Doc" + str(i) for i in range(len(data))]
df_document_topic = pd.DataFrame(np.round(lda_output, 2), columns=topicnames, index=docnames)
print('[x] Checking dominant topics')
dominant_topic = np.argmax(df_document_topic.values, axis=1)
df_document_topic["dominant_topic"] = dominant_topic
# Topic-Keyword Matrix
df_topic_keywords = pd.DataFrame(best_lda_model.components_)
df_topic_keywords
# Assign Column and Index
df_topic_keywords.columns = vectorizer.get_feature_names_out()
df_topic_keywords.index = topicnames
print('[x] Computing word-topic association')
# Show top n keywords for each topic
def show_topics(vectorizer=vectorizer, lda_model=lda_model, n_words=20):
keywords = np.array(vectorizer.get_feature_names_out())
topic_keywords = []
for topic_weights in lda_model.components_:
top_keyword_locs = (-topic_weights).argsort()[:n_words]
topic_keywords.append(keywords.take(top_keyword_locs))
return topic_keywords
topic_keywords = show_topics(vectorizer=vectorizer, lda_model=best_lda_model, n_words=15)
# Topic - Keywords Dataframe
df_topic_keywords = pd.DataFrame(topic_keywords)
df_topic_keywords.columns = ['Word '+str(i) for i in range(df_topic_keywords.shape[1])]
df_topic_keywords.index = ['Topic '+str(i) for i in range(df_topic_keywords.shape[0])]
df_topic_keywords
topics = [
f'Topic {i}' for i in range(len(df_topic_keywords))
]
df_topic_keywords["Topics"] = topics
df_topic_keywords
print('[x] Predicting dominant topic for each document')
# Define function to predict topic for a given text document.
def predict_topic(text, nlp=nlp):
global sent_to_words
global lemmatization
# Step 1: Clean with simple_preprocess
mytext_2 = list(sent_to_words(text))
# Step 2: Lemmatize
mytext_3 = lemmatization(mytext_2, allowed_postags=['NOUN', 'ADJ', 'VERB', 'ADV'], nlp=nlp)
# Step 3: Vectorize transform
mytext_4 = vectorizer.transform(mytext_3)
# Step 4: LDA Transform
topic_probability_scores = best_lda_model.transform(mytext_4)
topic = df_topic_keywords.iloc[np.argmax(topic_probability_scores), 1:14].values.tolist()
# Step 5: Infer Topic
infer_topic = df_topic_keywords.iloc[np.argmax(topic_probability_scores), -1]
#topic_guess = df_topic_keywords.iloc[np.argmax(topic_probability_scores), Topics]
return infer_topic, topic, topic_probability_scores
# # Predict the topic
# mytext = ["This is a test of a random topic where I talk about politics"]
# infer_topic, topic, prob_scores = predict_topic(text = mytext, nlp=nlp)
def apply_predict_topic(text):
text = [text]
infer_topic, topic, prob_scores = predict_topic(text = text, nlp=nlp)
return(infer_topic)
df["Topic_key_word"] = df['comment'].apply(apply_predict_topic)
print('[x] Generating plot [1]')
print('Percentuale di commenti ironici per ogni topic')
perc_topic_irony = {}
for t in topics:
total_0label = sum((df[label] == 1) & (df.Topic_key_word == t))
if total_0label != 0:
total_X_topic = df.Topic_key_word.value_counts()[t]
else:
total_0label, total_X_topic = 0, 0.001 # Non ci cono topic nel dataset
perc_topic_irony[t] = total_0label / total_X_topic
print(f'{t} w/ label 1: {total_0label}/{total_X_topic} ({total_0label / total_X_topic * 100 :.2f}%)')
fig1, ax = plt.subplots(figsize = (10, 7))
bottom = np.zeros(len(perc_topic_irony))
width = 0.9
ax.bar(perc_topic_irony.keys(), perc_topic_irony.values(), width, label = 'sarcastic')
comp = list(map(lambda x: 1 - x if x > 0 else 0, perc_topic_irony.values()))
ax.bar(perc_topic_irony.keys(), comp, width, bottom=list(perc_topic_irony.values()), label = 'not sarcastic')
ax.set_title("% of sarcastic comments for each topic")
plt.xticks(rotation=70)
plt.legend()
plt.axhline(0.5, color = 'red', ls=":")
# probably not necessary (?) To drop eventually if log are to much cluttered!
print('Percentage of each topic for each subreddit')
weight_counts = {}
for t in topics:
weight_counts[t] = []
for subreddit in df['subreddit'].value_counts().index[:n_top_subreddit_to_analyse]: # first 10 big subreddits
if sum(df[df.Topic_key_word == t].subreddit == subreddit) > 0: # se ci sono subreddit per il topic t (almeno una riga nel df)
perc_sub = df[df.Topic_key_word == t]['subreddit'].value_counts()[subreddit] / df['subreddit'].value_counts()[subreddit]
else:
perc_sub = 0
weight_counts[t].append(perc_sub)
print(f'Perc of topic {t} in subreddit {subreddit}: {perc_sub * 100:.2f}')
print()
print('[x] Generating plot [2]')
# plot
subreddits = list(df.subreddit.value_counts().index)[:n_top_subreddit_to_analyse]
irony_percs = {
t: [
len(
df[df.subreddit == subreddit][(df[df.subreddit == subreddit].Topic_key_word == t) & (df[df.subreddit == subreddit][label] == 1)]
) /
len(
df[df.subreddit == subreddit]
) for subreddit in subreddits
] for t in topics
}
width = 0.9
fig2, ax = plt.subplots(figsize = (10, 7))
plt.axhline(0.5, color = 'red', ls=":", alpha = .3)
bottom = np.zeros(len(subreddits))
for k, v in weight_counts.items():
p = ax.bar(subreddits, v, width, label=k, bottom=bottom)
ax.bar(subreddits, irony_percs[k], width - 0.01, bottom=bottom, color = 'black', edgecolor = 'white', alpha = .2, hatch = '\\')
bottom += v
ax.set_title("% of topics for each subreddit")
ax.legend(loc="upper right")
plt.xticks(rotation=50)
print('[v] All looking good!')
return df_topic_keywords, fig1, fig2
# def main():
with gr.Blocks() as demo:
gr.Markdown("# Dashboard per l'analisi con LDA")
gr.Markdown("### La dashboard permette l'addestramento di un modello LDA per controllare se e quali topic sono pi霉 propensi a commenti di tipo sarcastico")
# gradio.Dataframe(路路路)
inputs = []
with gr.Row():
inputs.append(gr.Slider(2, 25, value=5, step = 1, label="LDA N components", info="Scegli il numero di componenti per LDA"))
inputs.append(gr.Slider(2, 20, value=5, step = 1, label="Subreddit dal dataset", info="Numero di subreddit da analizzare"))
inputs.append(gr.Radio(
choices = ['Use True label', 'Use BERT prediction'],
value = 'Use True label',
label = "Scegliere quali label sull'ironia utilizzare:",
)
)
btn = gr.Button(value="Submit")
gr.Markdown("## Risulati ottenuti")
gr.Markdown("#### Top 15 parole che pi霉 contribuiscono al topic di riferimento (utlima colonna):")
btn.click(
get_lda,
inputs=inputs,
outputs=[
gr.DataFrame(),
gr.Plot(label="Quanto i topic trovati portano ironia?"),
gr.Plot(label="Come i topic sono correlati ai diversi subreddit del dataset?"),
]
)
# iface = gr.Interface(fn=greet, inputs="text", outputs="text")
if __name__ == "__main__":
demo.launch()
|