Testing / app.py
DreamStream-1's picture
Update app.py
d9bd34f verified
raw
history blame
8.99 kB
import os
import gradio as gr
import nltk
import numpy as np
import tflearn
import random
import json
import pickle
from nltk.tokenize import word_tokenize
from nltk.stem.lancaster import LancasterStemmer
from transformers import AutoTokenizer, AutoModelForSequenceClassification, pipeline
import googlemaps
import folium
import torch
# Disable GPU usage for TensorFlow
os.environ['CUDA_VISIBLE_DEVICES'] = '-1'
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '3'
# Download necessary NLTK resources
nltk.download("punkt")
# Initialize Lancaster Stemmer
stemmer = LancasterStemmer()
# Load chatbot training data and intents
with open("intents.json") as file:
intents_data = json.load(file)
with open("data.pickle", "rb") as f:
words, labels, training, output = pickle.load(f)
# Build the chatbot's neural network model
net = tflearn.input_data(shape=[None, len(training[0])])
net = tflearn.fully_connected(net, 8)
net = tflearn.fully_connected(net, 8)
net = tflearn.fully_connected(net, len(output[0]), activation="softmax")
net = tflearn.regression(net)
chatbot_model = tflearn.DNN(net)
chatbot_model.load("MentalHealthChatBotmodel.tflearn")
# Hugging Face models for sentiment and emotion detection
tokenizer_sentiment = AutoTokenizer.from_pretrained("cardiffnlp/twitter-roberta-base-sentiment")
model_sentiment = AutoModelForSequenceClassification.from_pretrained("cardiffnlp/twitter-roberta-base-sentiment")
tokenizer_emotion = AutoTokenizer.from_pretrained("j-hartmann/emotion-english-distilroberta-base")
model_emotion = AutoModelForSequenceClassification.from_pretrained("j-hartmann/emotion-english-distilroberta-base")
# Google Maps API Client
gmaps = googlemaps.Client(key=os.getenv('GOOGLE_API_KEY'))
# Function to process text input into a bag-of-words format
def bag_of_words(s, words):
bag = [0] * len(words)
s_words = word_tokenize(s)
s_words = [stemmer.stem(word.lower()) for word in s_words if word.isalnum()]
for se in s_words:
for i, w in enumerate(words):
if w == se:
bag[i] = 1
return np.array(bag)
# Chatbot Logic
def chatbot(message, history):
"""Generate chatbot response and append to history."""
history = history or []
try:
result = chatbot_model.predict([bag_of_words(message, words)])
tag = labels[np.argmax(result)]
response = "I'm not sure how to respond to that. πŸ€”"
for intent in intents_data["intents"]:
if intent["tag"] == tag:
response = random.choice(intent["responses"])
break
except Exception as e:
response = f"Error: {str(e)}"
history.append((message, response))
return history, response
# Sentiment Analysis
def analyze_sentiment(user_input):
inputs = tokenizer_sentiment(user_input, return_tensors="pt")
with torch.no_grad():
outputs = model_sentiment(**inputs)
sentiment_class = torch.argmax(outputs.logits, dim=1).item()
sentiment_map = ["Negative πŸ˜”", "Neutral 😐", "Positive 😊"]
return sentiment_map[sentiment_class]
# Emotion Detection
def detect_emotion(user_input):
pipe = pipeline("text-classification", model=model_emotion, tokenizer=tokenizer_emotion)
result = pipe(user_input)
emotion = result[0]['label']
return emotion
# Generate Suggestions
def generate_suggestions(emotion):
"""Return suggestions aligned with the detected emotion."""
suggestions = {
"joy": [
["Relaxation Techniques", '<a href="https://www.helpguide.org/mental-health/meditation/mindful-breathing-meditation" target="_blank">Visit</a>'],
["Dealing with Stress", '<a href="https://www.helpguide.org/mental-health/anxiety/tips-for-dealing-with-anxiety" target="_blank">Visit</a>'],
["Emotional Wellness Toolkit", '<a href="https://www.nih.gov/health-information/emotional-wellness-toolkit" target="_blank">Visit</a>'],
["Relaxation Videos", '<a href="https://youtu.be/m1vaUGtyo-A" target="_blank">Watch</a>']
],
"anger": [
["Emotional Wellness Toolkit", '<a href="https://www.nih.gov/health-information/emotional-wellness-toolkit" target="_blank">Visit</a>'],
["Stress Management Tips", '<a href="https://www.health.harvard.edu" target="_blank">Visit</a>'],
["Dealing with Anger", '<a href="https://www.helpguide.org/mental-health/anger-management" target="_blank">Visit</a>'],
["Relaxation Videos", '<a href="https://youtu.be/MIc299Flibs" target="_blank">Watch</a>']
],
"fear": [
["Mindfulness Practices", '<a href="https://www.helpguide.org/mental-health/meditation/mindful-breathing-meditation" target="_blank">Visit</a>'],
["Coping with Anxiety", '<a href="https://www.helpguide.org/mental-health/anxiety/tips-for-dealing-with-anxiety" target="_blank">Visit</a>'],
["Relaxation Videos", '<a href="https://youtu.be/yGKKz185M5o" target="_blank">Watch</a>']
],
"sadness": [
["Emotional Wellness Toolkit", '<a href="https://www.nih.gov/health-information/emotional-wellness-toolkit" target="_blank">Visit</a>'],
["Dealing with Anxiety", '<a href="https://www.helpguide.org/mental-health/anxiety/tips-for-dealing-with-anxiety" target="_blank">Visit</a>'],
["Relaxation Videos", '<a href="https://youtu.be/-e-4Kx5px_I" target="_blank">Watch</a>']
],
"surprise": [
["Managing Stress", '<a href="https://www.health.harvard.edu" target="_blank">Visit</a>'],
["Coping Strategies", '<a href="https://www.helpguide.org/mental-health/anxiety/tips-for-dealing-with-anxiety" target="_blank">Visit</a>'],
["Relaxation Videos", '<a href="https://youtu.be/m1vaUGtyo-A" target="_blank">Watch</a>']
],
}
return suggestions.get(emotion.lower(), [["No suggestions available", ""]])
# Get Health Professionals and Generate Map
def get_health_professionals_and_map(location, query):
"""Search professionals and return details + map as HTML."""
try:
geo_location = gmaps.geocode(location)
if geo_location:
lat, lng = geo_location[0]["geometry"]["location"].values()
places_result = gmaps.places_nearby(location=(lat, lng), radius=10000, keyword=query)["results"]
map_ = folium.Map(location=(lat, lng), zoom_start=13)
professionals = []
for place in places_result:
professionals.append(f"{place['name']} - {place.get('vicinity', '')}")
folium.Marker([place["geometry"]["location"]["lat"], place["geometry"]["location"]["lng"]],
popup=place["name"]).add_to(map_)
return professionals, map_._repr_html_()
return ["No professionals found"], ""
except Exception as e:
return [f"Error: {e}"], ""
# Main Application Logic
def app_function(user_input, location, query, history):
chatbot_history, response = chatbot(user_input, history)
emotion = detect_emotion(user_input)
suggestions = generate_suggestions(emotion)
professionals, map_html = get_health_professionals_and_map(location, query)
return chatbot_history, emotion, suggestions, professionals, map_html
# Enhanced CSS for Custom UI
custom_css = """
body {
background: linear-gradient(135deg, #000000, #ff5722);
color: white;
font-family: 'Roboto', sans-serif;
}
textarea, input[type="text"], .gr-chatbot {
background: #000000 !important;
color: white !important;
border: 2px solid #ff5722 !important;
border-radius: 5px;
padding: 12px !important;
}
.gr-dataframe {
background: #000000 !important;
color: white !important;
height: 350px !important;
border: 2px solid #ff5722 !important;
overflow-y: auto;
}
h1, h2, h3 {
color: white;
text-align: center;
font-weight: bold;
}
"""
# Gradio Application
with gr.Blocks(css=custom_css) as app:
gr.Markdown("<h1>🌟 Well-Being Companion</h1>")
gr.Markdown("<h2>Empowering Your Well-Being Journey πŸ’š</h2>")
with gr.Row():
user_input = gr.Textbox(label="Your Message", placeholder="Enter your message...")
location = gr.Textbox(label="Your Location", placeholder="Enter your location...")
query = gr.Textbox(label="Query (e.g., therapists)", placeholder="Search...")
chatbot_history = gr.Chatbot(label="Chat History")
emotion_box = gr.Textbox(label="Detected Emotion")
suggestions_table = gr.DataFrame(headers=["Suggestion", "Link"])
map_box = gr.HTML(label="Map of Health Professionals")
professionals_list = gr.Textbox(label="Health Professionals Nearby", lines=5)
submit_button = gr.Button("Submit")
submit_button.click(
app_function,
inputs=[user_input, location, query, chatbot_history],
outputs=[chatbot_history, emotion_box, suggestions_table, professionals_list, map_box],
)
app.launch()