Spaces:
Sleeping
Sleeping
import os | |
import gradio as gr | |
import nltk | |
import numpy as np | |
import tflearn | |
import random | |
import json | |
import pickle | |
from nltk.tokenize import word_tokenize | |
from nltk.stem.lancaster import LancasterStemmer | |
from transformers import AutoTokenizer, AutoModelForSequenceClassification, pipeline | |
import googlemaps | |
import folium | |
import torch | |
# Disable GPU usage for TensorFlow | |
os.environ['CUDA_VISIBLE_DEVICES'] = '-1' | |
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '3' | |
# Download necessary NLTK resources | |
nltk.download("punkt") | |
# Initialize Lancaster Stemmer | |
stemmer = LancasterStemmer() | |
# Load chatbot training data and intents | |
with open("intents.json") as file: | |
intents_data = json.load(file) | |
with open("data.pickle", "rb") as f: | |
words, labels, training, output = pickle.load(f) | |
# Build the chatbot's neural network model | |
net = tflearn.input_data(shape=[None, len(training[0])]) | |
net = tflearn.fully_connected(net, 8) | |
net = tflearn.fully_connected(net, 8) | |
net = tflearn.fully_connected(net, len(output[0]), activation="softmax") | |
net = tflearn.regression(net) | |
chatbot_model = tflearn.DNN(net) | |
chatbot_model.load("MentalHealthChatBotmodel.tflearn") | |
# Hugging Face models for sentiment and emotion detection | |
tokenizer_sentiment = AutoTokenizer.from_pretrained("cardiffnlp/twitter-roberta-base-sentiment") | |
model_sentiment = AutoModelForSequenceClassification.from_pretrained("cardiffnlp/twitter-roberta-base-sentiment") | |
tokenizer_emotion = AutoTokenizer.from_pretrained("j-hartmann/emotion-english-distilroberta-base") | |
model_emotion = AutoModelForSequenceClassification.from_pretrained("j-hartmann/emotion-english-distilroberta-base") | |
# Google Maps API Client | |
gmaps = googlemaps.Client(key=os.getenv('GOOGLE_API_KEY')) | |
# Function to process text input into a bag-of-words format | |
def bag_of_words(s, words): | |
bag = [0] * len(words) | |
s_words = word_tokenize(s) | |
s_words = [stemmer.stem(word.lower()) for word in s_words if word.isalnum()] | |
for se in s_words: | |
for i, w in enumerate(words): | |
if w == se: | |
bag[i] = 1 | |
return np.array(bag) | |
# Chatbot Logic | |
def chatbot(message, history): | |
"""Generate chatbot response and append to history.""" | |
history = history or [] | |
try: | |
result = chatbot_model.predict([bag_of_words(message, words)]) | |
tag = labels[np.argmax(result)] | |
response = "I'm not sure how to respond to that. π€" | |
for intent in intents_data["intents"]: | |
if intent["tag"] == tag: | |
response = random.choice(intent["responses"]) | |
break | |
except Exception as e: | |
response = f"Error: {str(e)}" | |
history.append((message, response)) | |
return history, response | |
# Sentiment Analysis | |
def analyze_sentiment(user_input): | |
inputs = tokenizer_sentiment(user_input, return_tensors="pt") | |
with torch.no_grad(): | |
outputs = model_sentiment(**inputs) | |
sentiment_class = torch.argmax(outputs.logits, dim=1).item() | |
sentiment_map = ["Negative π", "Neutral π", "Positive π"] | |
return sentiment_map[sentiment_class] | |
# Emotion Detection | |
def detect_emotion(user_input): | |
pipe = pipeline("text-classification", model=model_emotion, tokenizer=tokenizer_emotion) | |
result = pipe(user_input) | |
emotion = result[0]['label'] | |
return emotion | |
# Generate Suggestions | |
def generate_suggestions(emotion): | |
"""Return suggestions aligned with the detected emotion.""" | |
suggestions = { | |
"joy": [ | |
["Relaxation Techniques", '<a href="https://www.helpguide.org/mental-health/meditation/mindful-breathing-meditation" target="_blank">Visit</a>'], | |
["Dealing with Stress", '<a href="https://www.helpguide.org/mental-health/anxiety/tips-for-dealing-with-anxiety" target="_blank">Visit</a>'], | |
["Emotional Wellness Toolkit", '<a href="https://www.nih.gov/health-information/emotional-wellness-toolkit" target="_blank">Visit</a>'], | |
["Relaxation Videos", '<a href="https://youtu.be/m1vaUGtyo-A" target="_blank">Watch</a>'] | |
], | |
"anger": [ | |
["Emotional Wellness Toolkit", '<a href="https://www.nih.gov/health-information/emotional-wellness-toolkit" target="_blank">Visit</a>'], | |
["Stress Management Tips", '<a href="https://www.health.harvard.edu" target="_blank">Visit</a>'], | |
["Dealing with Anger", '<a href="https://www.helpguide.org/mental-health/anger-management" target="_blank">Visit</a>'], | |
["Relaxation Videos", '<a href="https://youtu.be/MIc299Flibs" target="_blank">Watch</a>'] | |
], | |
"fear": [ | |
["Mindfulness Practices", '<a href="https://www.helpguide.org/mental-health/meditation/mindful-breathing-meditation" target="_blank">Visit</a>'], | |
["Coping with Anxiety", '<a href="https://www.helpguide.org/mental-health/anxiety/tips-for-dealing-with-anxiety" target="_blank">Visit</a>'], | |
["Relaxation Videos", '<a href="https://youtu.be/yGKKz185M5o" target="_blank">Watch</a>'] | |
], | |
"sadness": [ | |
["Emotional Wellness Toolkit", '<a href="https://www.nih.gov/health-information/emotional-wellness-toolkit" target="_blank">Visit</a>'], | |
["Dealing with Anxiety", '<a href="https://www.helpguide.org/mental-health/anxiety/tips-for-dealing-with-anxiety" target="_blank">Visit</a>'], | |
["Relaxation Videos", '<a href="https://youtu.be/-e-4Kx5px_I" target="_blank">Watch</a>'] | |
], | |
"surprise": [ | |
["Managing Stress", '<a href="https://www.health.harvard.edu" target="_blank">Visit</a>'], | |
["Coping Strategies", '<a href="https://www.helpguide.org/mental-health/anxiety/tips-for-dealing-with-anxiety" target="_blank">Visit</a>'], | |
["Relaxation Videos", '<a href="https://youtu.be/m1vaUGtyo-A" target="_blank">Watch</a>'] | |
], | |
} | |
return suggestions.get(emotion.lower(), [["No suggestions available", ""]]) | |
# Get Health Professionals and Generate Map | |
def get_health_professionals_and_map(location, query): | |
"""Search professionals and return details + map as HTML.""" | |
try: | |
geo_location = gmaps.geocode(location) | |
if geo_location: | |
lat, lng = geo_location[0]["geometry"]["location"].values() | |
places_result = gmaps.places_nearby(location=(lat, lng), radius=10000, keyword=query)["results"] | |
map_ = folium.Map(location=(lat, lng), zoom_start=13) | |
professionals = [] | |
for place in places_result: | |
professionals.append(f"{place['name']} - {place.get('vicinity', '')}") | |
folium.Marker([place["geometry"]["location"]["lat"], place["geometry"]["location"]["lng"]], | |
popup=place["name"]).add_to(map_) | |
return professionals, map_._repr_html_() | |
return ["No professionals found"], "" | |
except Exception as e: | |
return [f"Error: {e}"], "" | |
# Main Application Logic | |
def app_function(user_input, location, query, history): | |
chatbot_history, response = chatbot(user_input, history) | |
emotion = detect_emotion(user_input) | |
suggestions = generate_suggestions(emotion) | |
professionals, map_html = get_health_professionals_and_map(location, query) | |
return chatbot_history, emotion, suggestions, professionals, map_html | |
# Enhanced CSS for Custom UI | |
custom_css = """ | |
body { | |
background: linear-gradient(135deg, #000000, #ff5722); | |
color: white; | |
font-family: 'Roboto', sans-serif; | |
} | |
textarea, input[type="text"], .gr-chatbot { | |
background: #000000 !important; | |
color: white !important; | |
border: 2px solid #ff5722 !important; | |
border-radius: 5px; | |
padding: 12px !important; | |
} | |
.gr-dataframe { | |
background: #000000 !important; | |
color: white !important; | |
height: 350px !important; | |
border: 2px solid #ff5722 !important; | |
overflow-y: auto; | |
} | |
h1, h2, h3 { | |
color: white; | |
text-align: center; | |
font-weight: bold; | |
} | |
""" | |
# Gradio Application | |
with gr.Blocks(css=custom_css) as app: | |
gr.Markdown("<h1>π Well-Being Companion</h1>") | |
gr.Markdown("<h2>Empowering Your Well-Being Journey π</h2>") | |
with gr.Row(): | |
user_input = gr.Textbox(label="Your Message", placeholder="Enter your message...") | |
location = gr.Textbox(label="Your Location", placeholder="Enter your location...") | |
query = gr.Textbox(label="Query (e.g., therapists)", placeholder="Search...") | |
chatbot_history = gr.Chatbot(label="Chat History") | |
emotion_box = gr.Textbox(label="Detected Emotion") | |
suggestions_table = gr.DataFrame(headers=["Suggestion", "Link"]) | |
map_box = gr.HTML(label="Map of Health Professionals") | |
professionals_list = gr.Textbox(label="Health Professionals Nearby", lines=5) | |
submit_button = gr.Button("Submit") | |
submit_button.click( | |
app_function, | |
inputs=[user_input, location, query, chatbot_history], | |
outputs=[chatbot_history, emotion_box, suggestions_table, professionals_list, map_box], | |
) | |
app.launch() |