Spaces:
Sleeping
Sleeping
File size: 8,985 Bytes
f0734be 864d91e 2ae19d7 881aad3 4184e5e 274d1f4 f0734be fa97be4 11851f1 274d1f4 d30f6a2 eefcaa7 d9bd34f 6858546 dacc7c0 d30f6a2 334ba26 d9bd34f 494aa89 6858546 334ba26 494aa89 0e313c1 d9bd34f 4e61093 274d1f4 6858546 c69efb6 d9bd34f 9e5813b 11851f1 9e5813b d9bd34f 4e61093 d9bd34f 936af04 4e61093 4184e5e 6858546 936af04 4525308 d9bd34f 274d1f4 a4c9f49 4184e5e d9bd34f 4e61093 6858546 4184e5e d9bd34f 11851f1 6858546 936af04 d9bd34f f0734be 274d1f4 6858546 274d1f4 d9bd34f 274d1f4 d9bd34f 658d2e0 274d1f4 1949203 864d91e d9bd34f 658d2e0 d30f6a2 d9bd34f 658d2e0 d30f6a2 d9bd34f 658d2e0 37c8a73 d9bd34f 6858546 d9bd34f 4e61093 d9bd34f 4e61093 658d2e0 4e61093 658d2e0 4e61093 d30f6a2 4e61093 d9bd34f 1949203 d9bd34f 4568d77 d9bd34f bdb69d5 a4c9f49 bdb69d5 a4c9f49 bdb69d5 d9bd34f bdb69d5 d9bd34f a4c9f49 d9bd34f a4c9f49 d9bd34f a699c5b d9bd34f a699c5b 5f4fda6 bdb69d5 d9bd34f bdb69d5 d9bd34f 658d2e0 4568d77 d9bd34f 6858546 d9bd34f 6858546 658d2e0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 |
import os
import gradio as gr
import nltk
import numpy as np
import tflearn
import random
import json
import pickle
from nltk.tokenize import word_tokenize
from nltk.stem.lancaster import LancasterStemmer
from transformers import AutoTokenizer, AutoModelForSequenceClassification, pipeline
import googlemaps
import folium
import torch
# Disable GPU usage for TensorFlow
os.environ['CUDA_VISIBLE_DEVICES'] = '-1'
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '3'
# Download necessary NLTK resources
nltk.download("punkt")
# Initialize Lancaster Stemmer
stemmer = LancasterStemmer()
# Load chatbot training data and intents
with open("intents.json") as file:
intents_data = json.load(file)
with open("data.pickle", "rb") as f:
words, labels, training, output = pickle.load(f)
# Build the chatbot's neural network model
net = tflearn.input_data(shape=[None, len(training[0])])
net = tflearn.fully_connected(net, 8)
net = tflearn.fully_connected(net, 8)
net = tflearn.fully_connected(net, len(output[0]), activation="softmax")
net = tflearn.regression(net)
chatbot_model = tflearn.DNN(net)
chatbot_model.load("MentalHealthChatBotmodel.tflearn")
# Hugging Face models for sentiment and emotion detection
tokenizer_sentiment = AutoTokenizer.from_pretrained("cardiffnlp/twitter-roberta-base-sentiment")
model_sentiment = AutoModelForSequenceClassification.from_pretrained("cardiffnlp/twitter-roberta-base-sentiment")
tokenizer_emotion = AutoTokenizer.from_pretrained("j-hartmann/emotion-english-distilroberta-base")
model_emotion = AutoModelForSequenceClassification.from_pretrained("j-hartmann/emotion-english-distilroberta-base")
# Google Maps API Client
gmaps = googlemaps.Client(key=os.getenv('GOOGLE_API_KEY'))
# Function to process text input into a bag-of-words format
def bag_of_words(s, words):
bag = [0] * len(words)
s_words = word_tokenize(s)
s_words = [stemmer.stem(word.lower()) for word in s_words if word.isalnum()]
for se in s_words:
for i, w in enumerate(words):
if w == se:
bag[i] = 1
return np.array(bag)
# Chatbot Logic
def chatbot(message, history):
"""Generate chatbot response and append to history."""
history = history or []
try:
result = chatbot_model.predict([bag_of_words(message, words)])
tag = labels[np.argmax(result)]
response = "I'm not sure how to respond to that. π€"
for intent in intents_data["intents"]:
if intent["tag"] == tag:
response = random.choice(intent["responses"])
break
except Exception as e:
response = f"Error: {str(e)}"
history.append((message, response))
return history, response
# Sentiment Analysis
def analyze_sentiment(user_input):
inputs = tokenizer_sentiment(user_input, return_tensors="pt")
with torch.no_grad():
outputs = model_sentiment(**inputs)
sentiment_class = torch.argmax(outputs.logits, dim=1).item()
sentiment_map = ["Negative π", "Neutral π", "Positive π"]
return sentiment_map[sentiment_class]
# Emotion Detection
def detect_emotion(user_input):
pipe = pipeline("text-classification", model=model_emotion, tokenizer=tokenizer_emotion)
result = pipe(user_input)
emotion = result[0]['label']
return emotion
# Generate Suggestions
def generate_suggestions(emotion):
"""Return suggestions aligned with the detected emotion."""
suggestions = {
"joy": [
["Relaxation Techniques", '<a href="https://www.helpguide.org/mental-health/meditation/mindful-breathing-meditation" target="_blank">Visit</a>'],
["Dealing with Stress", '<a href="https://www.helpguide.org/mental-health/anxiety/tips-for-dealing-with-anxiety" target="_blank">Visit</a>'],
["Emotional Wellness Toolkit", '<a href="https://www.nih.gov/health-information/emotional-wellness-toolkit" target="_blank">Visit</a>'],
["Relaxation Videos", '<a href="https://youtu.be/m1vaUGtyo-A" target="_blank">Watch</a>']
],
"anger": [
["Emotional Wellness Toolkit", '<a href="https://www.nih.gov/health-information/emotional-wellness-toolkit" target="_blank">Visit</a>'],
["Stress Management Tips", '<a href="https://www.health.harvard.edu" target="_blank">Visit</a>'],
["Dealing with Anger", '<a href="https://www.helpguide.org/mental-health/anger-management" target="_blank">Visit</a>'],
["Relaxation Videos", '<a href="https://youtu.be/MIc299Flibs" target="_blank">Watch</a>']
],
"fear": [
["Mindfulness Practices", '<a href="https://www.helpguide.org/mental-health/meditation/mindful-breathing-meditation" target="_blank">Visit</a>'],
["Coping with Anxiety", '<a href="https://www.helpguide.org/mental-health/anxiety/tips-for-dealing-with-anxiety" target="_blank">Visit</a>'],
["Relaxation Videos", '<a href="https://youtu.be/yGKKz185M5o" target="_blank">Watch</a>']
],
"sadness": [
["Emotional Wellness Toolkit", '<a href="https://www.nih.gov/health-information/emotional-wellness-toolkit" target="_blank">Visit</a>'],
["Dealing with Anxiety", '<a href="https://www.helpguide.org/mental-health/anxiety/tips-for-dealing-with-anxiety" target="_blank">Visit</a>'],
["Relaxation Videos", '<a href="https://youtu.be/-e-4Kx5px_I" target="_blank">Watch</a>']
],
"surprise": [
["Managing Stress", '<a href="https://www.health.harvard.edu" target="_blank">Visit</a>'],
["Coping Strategies", '<a href="https://www.helpguide.org/mental-health/anxiety/tips-for-dealing-with-anxiety" target="_blank">Visit</a>'],
["Relaxation Videos", '<a href="https://youtu.be/m1vaUGtyo-A" target="_blank">Watch</a>']
],
}
return suggestions.get(emotion.lower(), [["No suggestions available", ""]])
# Get Health Professionals and Generate Map
def get_health_professionals_and_map(location, query):
"""Search professionals and return details + map as HTML."""
try:
geo_location = gmaps.geocode(location)
if geo_location:
lat, lng = geo_location[0]["geometry"]["location"].values()
places_result = gmaps.places_nearby(location=(lat, lng), radius=10000, keyword=query)["results"]
map_ = folium.Map(location=(lat, lng), zoom_start=13)
professionals = []
for place in places_result:
professionals.append(f"{place['name']} - {place.get('vicinity', '')}")
folium.Marker([place["geometry"]["location"]["lat"], place["geometry"]["location"]["lng"]],
popup=place["name"]).add_to(map_)
return professionals, map_._repr_html_()
return ["No professionals found"], ""
except Exception as e:
return [f"Error: {e}"], ""
# Main Application Logic
def app_function(user_input, location, query, history):
chatbot_history, response = chatbot(user_input, history)
emotion = detect_emotion(user_input)
suggestions = generate_suggestions(emotion)
professionals, map_html = get_health_professionals_and_map(location, query)
return chatbot_history, emotion, suggestions, professionals, map_html
# Enhanced CSS for Custom UI
custom_css = """
body {
background: linear-gradient(135deg, #000000, #ff5722);
color: white;
font-family: 'Roboto', sans-serif;
}
textarea, input[type="text"], .gr-chatbot {
background: #000000 !important;
color: white !important;
border: 2px solid #ff5722 !important;
border-radius: 5px;
padding: 12px !important;
}
.gr-dataframe {
background: #000000 !important;
color: white !important;
height: 350px !important;
border: 2px solid #ff5722 !important;
overflow-y: auto;
}
h1, h2, h3 {
color: white;
text-align: center;
font-weight: bold;
}
"""
# Gradio Application
with gr.Blocks(css=custom_css) as app:
gr.Markdown("<h1>π Well-Being Companion</h1>")
gr.Markdown("<h2>Empowering Your Well-Being Journey π</h2>")
with gr.Row():
user_input = gr.Textbox(label="Your Message", placeholder="Enter your message...")
location = gr.Textbox(label="Your Location", placeholder="Enter your location...")
query = gr.Textbox(label="Query (e.g., therapists)", placeholder="Search...")
chatbot_history = gr.Chatbot(label="Chat History")
emotion_box = gr.Textbox(label="Detected Emotion")
suggestions_table = gr.DataFrame(headers=["Suggestion", "Link"])
map_box = gr.HTML(label="Map of Health Professionals")
professionals_list = gr.Textbox(label="Health Professionals Nearby", lines=5)
submit_button = gr.Button("Submit")
submit_button.click(
app_function,
inputs=[user_input, location, query, chatbot_history],
outputs=[chatbot_history, emotion_box, suggestions_table, professionals_list, map_box],
)
app.launch() |