File size: 8,985 Bytes
f0734be
864d91e
2ae19d7
 
881aad3
4184e5e
 
 
 
 
 
274d1f4
 
f0734be
fa97be4
11851f1
274d1f4
d30f6a2
eefcaa7
d9bd34f
6858546
dacc7c0
d30f6a2
334ba26
 
d9bd34f
494aa89
6858546
334ba26
494aa89
 
0e313c1
d9bd34f
4e61093
274d1f4
 
 
 
6858546
 
c69efb6
d9bd34f
9e5813b
 
11851f1
9e5813b
 
 
d9bd34f
4e61093
 
d9bd34f
936af04
4e61093
4184e5e
6858546
936af04
 
 
 
 
4525308
d9bd34f
274d1f4
a4c9f49
4184e5e
 
d9bd34f
 
4e61093
6858546
 
 
4184e5e
 
d9bd34f
11851f1
6858546
936af04
d9bd34f
f0734be
274d1f4
 
 
6858546
 
 
274d1f4
d9bd34f
274d1f4
 
 
d9bd34f
658d2e0
274d1f4
1949203
864d91e
d9bd34f
658d2e0
 
d30f6a2
 
 
d9bd34f
658d2e0
 
d30f6a2
d9bd34f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
658d2e0
37c8a73
d9bd34f
6858546
d9bd34f
4e61093
d9bd34f
4e61093
 
 
 
658d2e0
 
4e61093
 
 
 
658d2e0
 
4e61093
d30f6a2
4e61093
 
 
d9bd34f
 
 
 
1949203
 
d9bd34f
4568d77
d9bd34f
bdb69d5
 
 
 
a4c9f49
bdb69d5
a4c9f49
 
bdb69d5
 
d9bd34f
bdb69d5
 
d9bd34f
a4c9f49
 
d9bd34f
a4c9f49
d9bd34f
a699c5b
d9bd34f
a699c5b
5f4fda6
 
 
bdb69d5
 
d9bd34f
bdb69d5
d9bd34f
 
658d2e0
4568d77
d9bd34f
 
 
 
 
 
 
 
 
 
 
 
 
6858546
d9bd34f
 
6858546
 
658d2e0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
import os
import gradio as gr
import nltk
import numpy as np
import tflearn
import random
import json
import pickle
from nltk.tokenize import word_tokenize
from nltk.stem.lancaster import LancasterStemmer
from transformers import AutoTokenizer, AutoModelForSequenceClassification, pipeline
import googlemaps
import folium
import torch

# Disable GPU usage for TensorFlow
os.environ['CUDA_VISIBLE_DEVICES'] = '-1'
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '3'

# Download necessary NLTK resources
nltk.download("punkt")

# Initialize Lancaster Stemmer
stemmer = LancasterStemmer()

# Load chatbot training data and intents
with open("intents.json") as file:
    intents_data = json.load(file)

with open("data.pickle", "rb") as f:
    words, labels, training, output = pickle.load(f)

# Build the chatbot's neural network model
net = tflearn.input_data(shape=[None, len(training[0])])
net = tflearn.fully_connected(net, 8)
net = tflearn.fully_connected(net, 8)
net = tflearn.fully_connected(net, len(output[0]), activation="softmax")
net = tflearn.regression(net)
chatbot_model = tflearn.DNN(net)
chatbot_model.load("MentalHealthChatBotmodel.tflearn")

# Hugging Face models for sentiment and emotion detection
tokenizer_sentiment = AutoTokenizer.from_pretrained("cardiffnlp/twitter-roberta-base-sentiment")
model_sentiment = AutoModelForSequenceClassification.from_pretrained("cardiffnlp/twitter-roberta-base-sentiment")

tokenizer_emotion = AutoTokenizer.from_pretrained("j-hartmann/emotion-english-distilroberta-base")
model_emotion = AutoModelForSequenceClassification.from_pretrained("j-hartmann/emotion-english-distilroberta-base")

# Google Maps API Client
gmaps = googlemaps.Client(key=os.getenv('GOOGLE_API_KEY'))

# Function to process text input into a bag-of-words format
def bag_of_words(s, words):
    bag = [0] * len(words)
    s_words = word_tokenize(s)
    s_words = [stemmer.stem(word.lower()) for word in s_words if word.isalnum()]
    for se in s_words:
        for i, w in enumerate(words):
            if w == se:
                bag[i] = 1
    return np.array(bag)

# Chatbot Logic
def chatbot(message, history):
    """Generate chatbot response and append to history."""
    history = history or []
    try:
        result = chatbot_model.predict([bag_of_words(message, words)])
        tag = labels[np.argmax(result)]
        response = "I'm not sure how to respond to that. πŸ€”"
        for intent in intents_data["intents"]:
            if intent["tag"] == tag:
                response = random.choice(intent["responses"])
                break
    except Exception as e:
        response = f"Error: {str(e)}"
    history.append((message, response))
    return history, response

# Sentiment Analysis
def analyze_sentiment(user_input):
    inputs = tokenizer_sentiment(user_input, return_tensors="pt")
    with torch.no_grad():
        outputs = model_sentiment(**inputs)
    sentiment_class = torch.argmax(outputs.logits, dim=1).item()
    sentiment_map = ["Negative πŸ˜”", "Neutral 😐", "Positive 😊"]
    return sentiment_map[sentiment_class]

# Emotion Detection
def detect_emotion(user_input):
    pipe = pipeline("text-classification", model=model_emotion, tokenizer=tokenizer_emotion)
    result = pipe(user_input)
    emotion = result[0]['label']
    return emotion

# Generate Suggestions
def generate_suggestions(emotion):
    """Return suggestions aligned with the detected emotion."""
    suggestions = {
        "joy": [
            ["Relaxation Techniques", '<a href="https://www.helpguide.org/mental-health/meditation/mindful-breathing-meditation" target="_blank">Visit</a>'],
            ["Dealing with Stress", '<a href="https://www.helpguide.org/mental-health/anxiety/tips-for-dealing-with-anxiety" target="_blank">Visit</a>'],
            ["Emotional Wellness Toolkit", '<a href="https://www.nih.gov/health-information/emotional-wellness-toolkit" target="_blank">Visit</a>'],
            ["Relaxation Videos", '<a href="https://youtu.be/m1vaUGtyo-A" target="_blank">Watch</a>']
        ],
        "anger": [
            ["Emotional Wellness Toolkit", '<a href="https://www.nih.gov/health-information/emotional-wellness-toolkit" target="_blank">Visit</a>'],
            ["Stress Management Tips", '<a href="https://www.health.harvard.edu" target="_blank">Visit</a>'],
            ["Dealing with Anger", '<a href="https://www.helpguide.org/mental-health/anger-management" target="_blank">Visit</a>'],
            ["Relaxation Videos", '<a href="https://youtu.be/MIc299Flibs" target="_blank">Watch</a>']
        ],
        "fear": [
            ["Mindfulness Practices", '<a href="https://www.helpguide.org/mental-health/meditation/mindful-breathing-meditation" target="_blank">Visit</a>'],
            ["Coping with Anxiety", '<a href="https://www.helpguide.org/mental-health/anxiety/tips-for-dealing-with-anxiety" target="_blank">Visit</a>'],
            ["Relaxation Videos", '<a href="https://youtu.be/yGKKz185M5o" target="_blank">Watch</a>']
        ],
        "sadness": [
            ["Emotional Wellness Toolkit", '<a href="https://www.nih.gov/health-information/emotional-wellness-toolkit" target="_blank">Visit</a>'],
            ["Dealing with Anxiety", '<a href="https://www.helpguide.org/mental-health/anxiety/tips-for-dealing-with-anxiety" target="_blank">Visit</a>'],
            ["Relaxation Videos", '<a href="https://youtu.be/-e-4Kx5px_I" target="_blank">Watch</a>']
        ],
        "surprise": [
            ["Managing Stress", '<a href="https://www.health.harvard.edu" target="_blank">Visit</a>'],
            ["Coping Strategies", '<a href="https://www.helpguide.org/mental-health/anxiety/tips-for-dealing-with-anxiety" target="_blank">Visit</a>'],
            ["Relaxation Videos", '<a href="https://youtu.be/m1vaUGtyo-A" target="_blank">Watch</a>']
        ],
    }
    return suggestions.get(emotion.lower(), [["No suggestions available", ""]])

# Get Health Professionals and Generate Map
def get_health_professionals_and_map(location, query):
    """Search professionals and return details + map as HTML."""
    try:
        geo_location = gmaps.geocode(location)
        if geo_location:
            lat, lng = geo_location[0]["geometry"]["location"].values()
            places_result = gmaps.places_nearby(location=(lat, lng), radius=10000, keyword=query)["results"]

            map_ = folium.Map(location=(lat, lng), zoom_start=13)
            professionals = []
            for place in places_result:
                professionals.append(f"{place['name']} - {place.get('vicinity', '')}")
                folium.Marker([place["geometry"]["location"]["lat"], place["geometry"]["location"]["lng"]],
                              popup=place["name"]).add_to(map_)
            return professionals, map_._repr_html_()
        return ["No professionals found"], ""
    except Exception as e:
        return [f"Error: {e}"], ""

# Main Application Logic
def app_function(user_input, location, query, history):
    chatbot_history, response = chatbot(user_input, history)
    emotion = detect_emotion(user_input)
    suggestions = generate_suggestions(emotion)
    professionals, map_html = get_health_professionals_and_map(location, query)
    return chatbot_history, emotion, suggestions, professionals, map_html

# Enhanced CSS for Custom UI
custom_css = """
body {
    background: linear-gradient(135deg, #000000, #ff5722);
    color: white;
    font-family: 'Roboto', sans-serif;
}
textarea, input[type="text"], .gr-chatbot {
    background: #000000 !important;
    color: white !important;
    border: 2px solid #ff5722 !important;
    border-radius: 5px;
    padding: 12px !important;
}
.gr-dataframe {
    background: #000000 !important;
    color: white !important;
    height: 350px !important;
    border: 2px solid #ff5722 !important;
    overflow-y: auto;
}
h1, h2, h3 {
    color: white;
    text-align: center;
    font-weight: bold;
}
"""

# Gradio Application
with gr.Blocks(css=custom_css) as app:
    gr.Markdown("<h1>🌟 Well-Being Companion</h1>")
    gr.Markdown("<h2>Empowering Your Well-Being Journey πŸ’š</h2>")

    with gr.Row():
        user_input = gr.Textbox(label="Your Message", placeholder="Enter your message...")
        location = gr.Textbox(label="Your Location", placeholder="Enter your location...")
        query = gr.Textbox(label="Query (e.g., therapists)", placeholder="Search...")

    chatbot_history = gr.Chatbot(label="Chat History")
    emotion_box = gr.Textbox(label="Detected Emotion")
    suggestions_table = gr.DataFrame(headers=["Suggestion", "Link"])
    map_box = gr.HTML(label="Map of Health Professionals")
    professionals_list = gr.Textbox(label="Health Professionals Nearby", lines=5)

    submit_button = gr.Button("Submit")

    submit_button.click(
        app_function,
        inputs=[user_input, location, query, chatbot_history],
        outputs=[chatbot_history, emotion_box, suggestions_table, professionals_list, map_box],
    )

app.launch()