File size: 4,121 Bytes
59bf8b2
 
0af6850
 
 
59bf8b2
0af6850
59bf8b2
0af6850
b7f5af4
0af6850
 
 
 
 
 
b7f5af4
4fd36e5
 
 
0af6850
 
 
 
 
 
 
59bf8b2
b7f5af4
0af6850
 
 
 
 
 
59bf8b2
0af6850
 
 
 
 
 
 
 
59bf8b2
 
0af6850
 
 
 
 
 
 
59bf8b2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0af6850
 
 
 
 
 
59bf8b2
0af6850
 
 
 
 
 
 
59bf8b2
 
 
 
 
0af6850
59bf8b2
0af6850
 
 
 
 
 
 
 
 
 
 
59bf8b2
0af6850
59bf8b2
0af6850
59bf8b2
 
0af6850
 
b7f5af4
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
import time
import logging
import gradio as gr
from langchain.document_loaders import PyPDFLoader
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain.embeddings import HuggingFaceEmbeddings
from langchain.vectorstores import FAISS
from langchain_core.vectorstores import InMemoryVectorStore
from groq import Groq
from langchain.memory import ConversationBufferMemory  # Import memory

logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)

client = Groq(api_key="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")

memory = ConversationBufferMemory()

embeddings = HuggingFaceEmbeddings(model_name="heydariAI/persian-embeddings")
vector_store = InMemoryVectorStore(embeddings)

def process_pdf_with_langchain(pdf_path):
    try:
        loader = PyPDFLoader(pdf_path)
        documents = loader.load()
        text_splitter = RecursiveCharacterTextSplitter(chunk_size=500, chunk_overlap=50)
        split_documents = text_splitter.split_documents(documents)
        
        vectorstore = FAISS.from_documents(split_documents, embeddings)
        retriever = vectorstore.as_retriever(search_kwargs={"k": 3})
        return retriever
    except Exception as e:
        logger.error(f"Error processing PDF: {e}")
        raise

def generate_response(query, retriever=None):
    try:
        knowledge = ""

        if retriever:
            relevant_docs = retriever.get_relevant_documents(query)
            knowledge += "\n".join([doc.page_content for doc in relevant_docs])

        chat_history = memory.load_memory_variables({}).get("chat_history", "")
        context = "This is a conversation with ParvizGPT, an AI model designed by Amir Mahdi Parviz from KUT."

        if knowledge:
            context += f"\n\nRelevant Knowledge:\n{knowledge}"
        if chat_history:
            context += f"\n\nChat History:\n{chat_history}"

        context += f"\n\nYou: {query}\nParvizGPT:"

        response = "در حال پردازش..."

        retries = 3
        for attempt in range(retries):
            try:
                chat_completion = client.chat.completions.create(
                    messages=[{"role": "user", "content": context}],
                    model="deepseek-r1-distill-llama-70b"
                )
                response = chat_completion.choices[0].message.content.strip()
                memory.save_context({"input": query}, {"output": response})
                break
            except Exception as e:
                logger.error(f"Attempt {attempt + 1} failed: {e}")
                time.sleep(2)

        return response
    except Exception as e:
        logger.error(f"Error generating response: {e}")
        return f"Error: {e}"

def gradio_interface(user_message, chat_box, pdf_file=None):
    global retriever
    if pdf_file is not None:
        try:
            retriever = process_pdf_with_langchain(pdf_file.name)
        except Exception as e:
            return chat_box + [("Error", f"Error processing PDF: {e}")]

    chat_box.append(("ParvizGPT", "در حال پردازش..."))
    
    response = generate_response(user_message, retriever=retriever)
    
    chat_box[-1] = ("ParvizGPT", response) 
    chat_box.append(("You", user_message))
    
    return chat_box

def clear_memory():
    memory.clear()
    return []

retriever = None

with gr.Blocks() as interface:
    gr.Markdown("## ParvizGPT")
    chat_box = gr.Chatbot(label="Chat History", value=[])
    user_message = gr.Textbox(label="Your Message", placeholder="Type your message here and press Enter...", lines=1, interactive=True)
    clear_memory_btn = gr.Button("Clear Memory", interactive=True)
    pdf_file = gr.File(label="Upload PDF for Context (Optional)", type="filepath", interactive=True, scale=1)
    submit_btn = gr.Button("Submit")
    submit_btn.click(gradio_interface, inputs=[user_message, chat_box, pdf_file], outputs=chat_box)
    user_message.submit(gradio_interface, inputs=[user_message, chat_box, pdf_file], outputs=chat_box)
    clear_memory_btn.click(clear_memory, inputs=[], outputs=chat_box)

interface.launch()