Spaces:
Running
Running
File size: 4,121 Bytes
59bf8b2 0af6850 59bf8b2 0af6850 59bf8b2 0af6850 b7f5af4 0af6850 b7f5af4 4fd36e5 0af6850 59bf8b2 b7f5af4 0af6850 59bf8b2 0af6850 59bf8b2 0af6850 59bf8b2 0af6850 59bf8b2 0af6850 59bf8b2 0af6850 59bf8b2 0af6850 59bf8b2 0af6850 59bf8b2 0af6850 59bf8b2 0af6850 b7f5af4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 |
import time
import logging
import gradio as gr
from langchain.document_loaders import PyPDFLoader
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain.embeddings import HuggingFaceEmbeddings
from langchain.vectorstores import FAISS
from langchain_core.vectorstores import InMemoryVectorStore
from groq import Groq
from langchain.memory import ConversationBufferMemory # Import memory
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
client = Groq(api_key="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")
memory = ConversationBufferMemory()
embeddings = HuggingFaceEmbeddings(model_name="heydariAI/persian-embeddings")
vector_store = InMemoryVectorStore(embeddings)
def process_pdf_with_langchain(pdf_path):
try:
loader = PyPDFLoader(pdf_path)
documents = loader.load()
text_splitter = RecursiveCharacterTextSplitter(chunk_size=500, chunk_overlap=50)
split_documents = text_splitter.split_documents(documents)
vectorstore = FAISS.from_documents(split_documents, embeddings)
retriever = vectorstore.as_retriever(search_kwargs={"k": 3})
return retriever
except Exception as e:
logger.error(f"Error processing PDF: {e}")
raise
def generate_response(query, retriever=None):
try:
knowledge = ""
if retriever:
relevant_docs = retriever.get_relevant_documents(query)
knowledge += "\n".join([doc.page_content for doc in relevant_docs])
chat_history = memory.load_memory_variables({}).get("chat_history", "")
context = "This is a conversation with ParvizGPT, an AI model designed by Amir Mahdi Parviz from KUT."
if knowledge:
context += f"\n\nRelevant Knowledge:\n{knowledge}"
if chat_history:
context += f"\n\nChat History:\n{chat_history}"
context += f"\n\nYou: {query}\nParvizGPT:"
response = "در حال پردازش..."
retries = 3
for attempt in range(retries):
try:
chat_completion = client.chat.completions.create(
messages=[{"role": "user", "content": context}],
model="deepseek-r1-distill-llama-70b"
)
response = chat_completion.choices[0].message.content.strip()
memory.save_context({"input": query}, {"output": response})
break
except Exception as e:
logger.error(f"Attempt {attempt + 1} failed: {e}")
time.sleep(2)
return response
except Exception as e:
logger.error(f"Error generating response: {e}")
return f"Error: {e}"
def gradio_interface(user_message, chat_box, pdf_file=None):
global retriever
if pdf_file is not None:
try:
retriever = process_pdf_with_langchain(pdf_file.name)
except Exception as e:
return chat_box + [("Error", f"Error processing PDF: {e}")]
chat_box.append(("ParvizGPT", "در حال پردازش..."))
response = generate_response(user_message, retriever=retriever)
chat_box[-1] = ("ParvizGPT", response)
chat_box.append(("You", user_message))
return chat_box
def clear_memory():
memory.clear()
return []
retriever = None
with gr.Blocks() as interface:
gr.Markdown("## ParvizGPT")
chat_box = gr.Chatbot(label="Chat History", value=[])
user_message = gr.Textbox(label="Your Message", placeholder="Type your message here and press Enter...", lines=1, interactive=True)
clear_memory_btn = gr.Button("Clear Memory", interactive=True)
pdf_file = gr.File(label="Upload PDF for Context (Optional)", type="filepath", interactive=True, scale=1)
submit_btn = gr.Button("Submit")
submit_btn.click(gradio_interface, inputs=[user_message, chat_box, pdf_file], outputs=chat_box)
user_message.submit(gradio_interface, inputs=[user_message, chat_box, pdf_file], outputs=chat_box)
clear_memory_btn.click(clear_memory, inputs=[], outputs=chat_box)
interface.launch() |