Spaces:
Running
Running
File size: 20,165 Bytes
9dac3f4 e0b3b4f 20b2044 d509284 57a62f9 a2e2c3e d509284 9dac3f4 e0b3b4f 9dac3f4 d509284 9dac3f4 d509284 9dac3f4 c6d0876 9dac3f4 e0b3b4f 9dac3f4 20b2044 9dac3f4 e0b3b4f 20b2044 9dac3f4 e0b3b4f 9dac3f4 20b2044 4bfe417 9dac3f4 20b2044 4bfe417 e0b3b4f 20b2044 9dac3f4 20b2044 9dac3f4 20b2044 9dac3f4 20b2044 e0b3b4f 9dac3f4 e0b3b4f 20b2044 9dac3f4 e0b3b4f 9dac3f4 20b2044 9dac3f4 4bfe417 20b2044 e0b3b4f d509284 e0b3b4f d509284 9dac3f4 d509284 e0b3b4f d53a07b bfd0ee5 d509284 e0b3b4f 9dac3f4 d509284 9dac3f4 e0b3b4f 9dac3f4 e0b3b4f 9dac3f4 e4d272c 9dac3f4 e0b3b4f 40d601a e0b3b4f 9dac3f4 e0b3b4f 9dac3f4 20b2044 58e0366 3066087 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 |
import os
import whisper
import requests
from flask import Flask, request, jsonify, render_template
from dotenv import load_dotenv
from deepgram import DeepgramClient, PrerecordedOptions
import tempfile
import json
import warnings
warnings.filterwarnings("ignore", message="FP16 is not supported on CPU; using FP32 instead")
app = Flask(__name__)
print("APP IS RUNNING, ANIKET")
# Load the .env file
load_dotenv()
print("ENV LOADED, ANIKET")
# Fetch the API key from the .env file
API_KEY = os.getenv("FIRST_API_KEY")
DEEPGRAM_API_KEY = os.getenv("SECOND_API_KEY")
# Ensure the API key is loaded correctly
if not API_KEY:
raise ValueError("API Key not found. Make sure it is set in the .env file.")
if not DEEPGRAM_API_KEY:
raise ValueError("DEEPGRAM_API_KEY not found. Make sure it is set in the .env file.")
GEMINI_API_ENDPOINT = "https://generativelanguage.googleapis.com/v1beta/models/gemini-1.5-flash-latest:generateContent"
GEMINI_API_KEY = API_KEY
# Load Whisper AI model at startup
# print("Loading Whisper AI model..., ANIKET")
# whisper_model = whisper.load_model("base") # Choose model size: tiny, base, small, medium, large
# print("Whisper AI model loaded successfully, ANIKET")
@app.route("/", methods=["GET"])
def health_check():
return jsonify({"status": "success", "message": "API is running successfully!"}), 200
@app.route("/mbsa")
def mbsa():
return render_template("mbsa.html")
@app.route('/process-audio', methods=['POST'])
def process_audio():
print("GOT THE PROCESS AUDIO REQUEST, ANIKET")
if 'audio' not in request.files:
return jsonify({"error": "No audio file provided"}), 400
audio_file = request.files['audio']
print("AUDIO FILE NAME: ", audio_file)
temp_audio_path = None
try:
print("STARTING TRANSCRIPTION, ANIKET")
# Step 1: Save the audio file temporarily to a specific location
with tempfile.NamedTemporaryFile(delete=False, suffix='.wav') as temp_audio_file:
temp_audio_path = temp_audio_file.name # Get the file path
temp_audio_file.write(audio_file.read()) # Write the uploaded audio to the temp file
print(f"Temporary audio file saved at: {temp_audio_path}")
# Step 2: Transcribe the uploaded audio file synchronously
transcription = transcribe_audio(temp_audio_path)
print("BEFORE THE transcription FAILED ERROR, CHECKING IF I GOT THE TRANSCRIPTION", transcription)
if not transcription:
return jsonify({"error": "Audio transcription failed"}), 500
print("GOT THE transcription")
# Step 3: Generate structured recipe information using Gemini API synchronously
print("Starting the GEMINI REQUEST TO STRUCTURE IT")
structured_data = query_gemini_api(transcription)
print("GOT THE STRUCTURED DATA", structured_data)
# Step 4: Return the structured data
return jsonify(structured_data)
except Exception as e:
return jsonify({"error": str(e)}), 500
finally:
# Clean up the temporary WAV file
if temp_audio_path and os.path.exists(temp_audio_path):
os.remove(temp_audio_path)
print(f"Temporary WAV file deleted: {temp_audio_path}")
def transcribe_audio(wav_file_path):
"""
Transcribe audio from a video file using Deepgram API synchronously.
Args:
wav_file_path (str): Path to save the converted WAV file.
Returns:
dict: A dictionary containing status, transcript, or error message.
"""
print("Entered the transcribe_audio function")
try:
# Initialize Deepgram client
deepgram = DeepgramClient(DEEPGRAM_API_KEY)
# Open the converted WAV file
with open(wav_file_path, 'rb') as buffer_data:
payload = {'buffer': buffer_data}
# Configure transcription options
options = PrerecordedOptions(
smart_format=True, model="nova-2", language="en-US"
)
# Transcribe the audio
response = deepgram.listen.prerecorded.v('1').transcribe_file(payload, options)
# Check if the response is valid
if response:
print("Request successful! Processing response.")
# Convert response to JSON string
try:
data_str = response.to_json(indent=4)
except AttributeError as e:
return {"status": "error", "message": f"Error converting response to JSON: {e}"}
# Parse the JSON string to a Python dictionary
try:
data = json.loads(data_str)
except json.JSONDecodeError as e:
return {"status": "error", "message": f"Error parsing JSON string: {e}"}
# Extract the transcript
try:
transcript = data["results"]["channels"][0]["alternatives"][0]["transcript"]
except KeyError as e:
return {"status": "error", "message": f"Error extracting transcript: {e}"}
print(f"Transcript obtained: {transcript}")
# Step: Save the transcript to a text file
transcript_file_path = "transcript_from_transcribe_audio.txt"
with open(transcript_file_path, "w", encoding="utf-8") as transcript_file:
transcript_file.write(transcript)
print(f"Transcript saved to file: {transcript_file_path}")
return transcript
else:
return {"status": "error", "message": "Invalid response from Deepgram."}
except FileNotFoundError:
return {"status": "error", "message": f"Video file not found: {wav_file_path}"}
except Exception as e:
return {"status": "error", "message": f"Unexpected error: {e}"}
finally:
# Clean up the temporary WAV file
if os.path.exists(wav_file_path):
os.remove(wav_file_path)
print(f"Temporary WAV file deleted: {wav_file_path}")
def query_gemini_api(transcription):
"""
Send transcription text to Gemini API and fetch structured recipe information synchronously.
"""
try:
# Define the structured prompt
prompt = (
"Print the transcription in the response as well"
"Analyze the provided cooking video transcription and extract the following structured information:\n"
"1. Recipe Name: Identify the name of the dish being prepared.\n"
"2. Ingredients List: Extract a detailed list of ingredients with their respective quantities (if mentioned).\n"
"3. Steps for Preparation: Provide a step-by-step breakdown of the recipe's preparation process, organized and numbered sequentially.\n"
"4. Cooking Techniques Used: Highlight the cooking techniques demonstrated in the video, such as searing, blitzing, wrapping, etc.\n"
"5. Equipment Needed: List all tools, appliances, or utensils mentioned, e.g., blender, hot pan, cling film, etc.\n"
"6. Nutritional Information (if inferred): Provide an approximate calorie count or nutritional breakdown based on the ingredients used.\n"
"7. Serving size: In count of people or portion size.\n"
"8. Special Notes or Variations: Include any specific tips, variations, or alternatives mentioned.\n"
"9. Festive or Thematic Relevance: Note if the recipe has any special relevance to holidays, events, or seasons.\n"
f"Text: {transcription}\n"
)
# Prepare the payload and headers
payload = {
"contents": [
{
"parts": [
{"text": prompt}
]
}
]
}
headers = {"Content-Type": "application/json"}
# Send request to Gemini API synchronously
response = requests.post(
f"{GEMINI_API_ENDPOINT}?key={GEMINI_API_KEY}",
json=payload,
headers=headers,
)
# Raise error if response code is not 200
response.raise_for_status()
data = response.json()
return data.get("candidates", [{}])[0].get("content", {}).get("parts", [{}])[0].get("text", "No result found")
except requests.exceptions.RequestException as e:
print(f"Error querying Gemini API: {e}")
return {"error": str(e)}
if __name__ == '__main__':
app.run(debug=True)
# # Above code is without polling and sleep
# import os
# import whisper
# import requests
# from flask import Flask, request, jsonify, render_template
# import tempfile
# import warnings
# warnings.filterwarnings("ignore", message="FP16 is not supported on CPU; using FP32 instead")
# app = Flask(__name__)
# print("APP IS RUNNING, ANIKET")
# # Gemini API settings
# from dotenv import load_dotenv
# # Load the .env file
# load_dotenv()
# print("ENV LOADED, ANIKET")
# # Fetch the API key from the .env file
# API_KEY = os.getenv("FIRST_API_KEY")
# # Ensure the API key is loaded correctly
# if not API_KEY:
# raise ValueError("API Key not found. Make sure it is set in the .env file.")
# GEMINI_API_ENDPOINT = "https://generativelanguage.googleapis.com/v1beta/models/gemini-1.5-flash-latest:generateContent"
# GEMINI_API_KEY = API_KEY
# # Load Whisper AI model at startup
# print("Loading Whisper AI model..., ANIKET")
# whisper_model = whisper.load_model("base") # Choose model size: tiny, base, small, medium, large
# print("Whisper AI model loaded successfully, ANIKET")
# # Define the "/" endpoint for health check
# @app.route("/", methods=["GET"])
# def health_check():
# return jsonify({"status": "success", "message": "API is running successfully!"}), 200
# @app.route("/mbsa")
# def mbsa():
# return render_template("mbsa.html")
# @app.route('/process-audio', methods=['POST'])
# def process_audio():
# print("GOT THE PROCESS AUDIO REQUEST, ANIKET")
# """
# Flask endpoint to process audio:
# 1. Transcribe provided audio file using Whisper AI.
# 2. Send transcription to Gemini API for recipe information extraction.
# 3. Return structured data in the response.
# """
# if 'audio' not in request.files:
# return jsonify({"error": "No audio file provided"}), 400
# audio_file = request.files['audio']
# print("AUDIO FILE NAME: ", audio_file)
# try:
# print("STARTING TRANSCRIPTION, ANIKET")
# # Step 1: Transcribe the uploaded audio file directly
# audio_file = request.files['audio']
# transcription = transcribe_audio(audio_file)
# print("BEFORE THE transcription FAILED ERROR, CHECKING IF I GOT THE TRANSCRIPTION", transcription)
# if not transcription:
# return jsonify({"error": "Audio transcription failed"}), 500
# print("GOT THE transcription")
# print("Starting the GEMINI REQUEST TO STRUCTURE IT")
# # Step 2: Generate structured recipe information using Gemini API
# structured_data = query_gemini_api(transcription)
# print("GOT THE STRUCTURED DATA", structured_data)
# # Step 3: Return the structured data
# return jsonify(structured_data)
# except Exception as e:
# return jsonify({"error": str(e)}), 500
# def transcribe_audio(audio_path):
# """
# Transcribe audio using Whisper AI.
# """
# print("CAME IN THE transcribe audio function")
# try:
# # Transcribe audio using Whisper AI
# print("Transcribing audio...")
# result = whisper_model.transcribe(audio_path)
# print("THE RESULTS ARE", result)
# return result.get("text", "").strip()
# except Exception as e:
# print(f"Error in transcription: {e}")
# return None
# def query_gemini_api(transcription):
# """
# Send transcription text to Gemini API and fetch structured recipe information.
# """
# try:
# # Define the structured prompt
# prompt = (
# "Analyze the provided cooking video transcription and extract the following structured information:\n"
# "1. Recipe Name: Identify the name of the dish being prepared.\n"
# "2. Ingredients List: Extract a detailed list of ingredients with their respective quantities (if mentioned).\n"
# "3. Steps for Preparation: Provide a step-by-step breakdown of the recipe's preparation process, organized and numbered sequentially.\n"
# "4. Cooking Techniques Used: Highlight the cooking techniques demonstrated in the video, such as searing, blitzing, wrapping, etc.\n"
# "5. Equipment Needed: List all tools, appliances, or utensils mentioned, e.g., blender, hot pan, cling film, etc.\n"
# "6. Nutritional Information (if inferred): Provide an approximate calorie count or nutritional breakdown based on the ingredients used.\n"
# "7. Serving size: In count of people or portion size.\n"
# "8. Special Notes or Variations: Include any specific tips, variations, or alternatives mentioned.\n"
# "9. Festive or Thematic Relevance: Note if the recipe has any special relevance to holidays, events, or seasons.\n"
# f"Text: {transcription}\n"
# )
# # Prepare the payload and headers
# payload = {
# "contents": [
# {
# "parts": [
# {"text": prompt}
# ]
# }
# ]
# }
# headers = {"Content-Type": "application/json"}
# # Send request to Gemini API and wait for the response
# print("Querying Gemini API...")
# response = requests.post(
# f"{GEMINI_API_ENDPOINT}?key={GEMINI_API_KEY}",
# json=payload,
# headers=headers,
# timeout=60 # 60 seconds timeout for the request
# )
# response.raise_for_status()
# # Extract and return the structured data
# data = response.json()
# return data.get("candidates", [{}])[0].get("content", {}).get("parts", [{}])[0].get("text", "No result found")
# except requests.exceptions.RequestException as e:
# print(f"Error querying Gemini API: {e}")
# return {"error": str(e)}
# if __name__ == '__main__':
# app.run(debug=True)
# import os
# import subprocess
# import whisper
# import requests
# import tempfile
# import warnings
# import threading
# from flask import Flask, request, jsonify, send_file, render_template
# from dotenv import load_dotenv
# import requests
# warnings.filterwarnings("ignore", category=UserWarning, module="whisper")
# app = Flask(__name__)
# # Gemini API settings
# load_dotenv()
# API_KEY = os.getenv("FIRST_API_KEY")
# # Ensure the API key is loaded correctly
# if not API_KEY:
# raise ValueError("API Key not found. Make sure it is set in the .env file.")
# GEMINI_API_ENDPOINT = "https://generativelanguage.googleapis.com/v1beta/models/gemini-1.5-flash-latest:generateContent"
# GEMINI_API_KEY = API_KEY
# # Load Whisper AI model at startup
# print("Loading Whisper AI model...")
# whisper_model = whisper.load_model("base")
# print("Whisper AI model loaded successfully.")
# # Define the "/" endpoint for health check
# @app.route("/", methods=["GET"])
# def health_check():
# return jsonify({"status": "success", "message": "API is running successfully!"}), 200
# def process_video_in_background(video_file, temp_video_file_name):
# """
# This function is executed in a separate thread to handle the long-running
# video processing tasks such as transcription and querying the Gemini API.
# """
# try:
# transcription = transcribe_audio(temp_video_file_name)
# if not transcription:
# print("Audio transcription failed")
# return
# structured_data = query_gemini_api(transcription)
# # Send structured data back or store it in a database, depending on your use case
# print("Processing complete. Structured data:", structured_data)
# except Exception as e:
# print(f"Error processing video: {e}")
# finally:
# # Clean up temporary files
# if os.path.exists(temp_video_file_name):
# os.remove(temp_video_file_name)
# @app.route('/process-video', methods=['POST'])
# def process_video():
# if 'video' not in request.files:
# return jsonify({"error": "No video file provided"}), 400
# video_file = request.files['video']
# try:
# # Save video to a temporary file
# with tempfile.NamedTemporaryFile(delete=False, suffix=".mp4") as temp_video_file:
# video_file.save(temp_video_file.name)
# print(f"Video file saved: {temp_video_file.name}")
# # Start the video processing in a background thread
# threading.Thread(target=process_video_in_background, args=(video_file, temp_video_file.name)).start()
# return jsonify({"message": "Video is being processed in the background."}), 202
# except Exception as e:
# return jsonify({"error": str(e)}), 500
# def transcribe_audio(video_path):
# """
# Transcribe audio directly from a video file using Whisper AI.
# """
# try:
# print(f"Transcribing video: {video_path}")
# result = whisper_model.transcribe(video_path)
# return result['text']
# except Exception as e:
# print(f"Error in transcription: {e}")
# return None
# def query_gemini_api(transcription):
# """
# Send transcription text to Gemini API and fetch structured recipe information.
# """
# try:
# # Define the structured prompt
# prompt = (
# "Analyze the provided cooking video transcription and extract the following structured information:\n"
# "1. Recipe Name: Identify the name of the dish being prepared.\n"
# "2. Ingredients List: Extract a detailed list of ingredients with their respective quantities (if mentioned).\n"
# "3. Steps for Preparation: Provide a step-by-step breakdown of the recipe's preparation process, organized and numbered sequentially.\n"
# "4. Cooking Techniques Used: Highlight the cooking techniques demonstrated in the video, such as searing, blitzing, wrapping, etc.\n"
# "5. Equipment Needed: List all tools, appliances, or utensils mentioned, e.g., blender, hot pan, cling film, etc.\n"
# "6. Nutritional Information (if inferred): Provide an approximate calorie count or nutritional breakdown based on the ingredients used.\n"
# "7. Serving size: In count of people or portion size.\n"
# "8. Special Notes or Variations: Include any specific tips, variations, or alternatives mentioned.\n"
# "9. Festive or Thematic Relevance: Note if the recipe has any special relevance to holidays, events, or seasons.\n"
# f"Text: {transcription}\n"
# )
# payload = {
# "contents": [
# {"parts": [{"text": prompt}]}
# ]
# }
# headers = {"Content-Type": "application/json"}
# # Send request to Gemini API
# response = requests.post(
# f"{GEMINI_API_ENDPOINT}?key={GEMINI_API_KEY}",
# json=payload,
# headers=headers
# )
# response.raise_for_status()
# # Extract and return the structured data
# data = response.json()
# return data.get("candidates", [{}])[0].get("content", {}).get("parts", [{}])[0].get("text", "No result found")
# except requests.exceptions.RequestException as e:
# print(f"Error querying Gemini API: {e}")
# return {"error": str(e)}
# if __name__ == '__main__':
# app.run(debug=True)
|