File size: 6,715 Bytes
7ab1cfa
7334270
 
019978b
f7c5d29
7de09a8
 
5d80aad
67206bd
 
7ab1cfa
019978b
 
 
7f96593
 
ad99e6b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
eb27d90
ad99e6b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0bb4b87
 
 
 
 
 
201412f
0bb4b87
 
ad99e6b
 
0bb4b87
 
ad99e6b
 
0bb4b87
 
1e8ab2e
f7c5d29
24a14ee
 
 
 
 
 
201412f
 
 
 
 
 
 
 
 
 
 
 
6e28a65
 
 
 
 
 
 
 
d66f370
eb3660f
 
 
e418463
 
76a1678
99c16c0
 
 
76a1678
e418463
76a1678
 
 
 
99c16c0
0e9e498
 
99c16c0
847f6de
f7c5d29
e01fd9a
5b1e10a
f7c5d29
6e28a65
 
019978b
e01fd9a
7334270
 
 
e01fd9a
 
f7c5d29
 
e01fd9a
eb3660f
e01fd9a
eb3660f
a303dc5
7c08841
eb3660f
7de09a8
 
7f7361b
 
 
eb3660f
 
 
7334270
 
eb3660f
7de09a8
 
 
 
 
 
 
 
 
 
f92e7a9
ff2edc5
 
0db0a4a
ff2edc5
7de09a8
 
 
 
 
 
5bf5a53
7e143cc
c59033b
 
f92e7a9
7de09a8
5d415a5
091242e
07f378f
808014b
 
 
67206bd
 
808014b
 
 
7de09a8
26b55ee
 
019978b
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
import streamlit as st
import streamlit_ext as ste

from trainer import Trainer
import random
from rdkit.Chem import Draw
from rdkit import Chem
from rdkit.Chem.Draw import IPythonConsole
import io
from PIL import Image

class DrugGENConfig:
    submodel='CrossLoss'
    act='relu'
    z_dim=16
    max_atom=45
    lambda_gp=1
    dim=128
    depth=1
    heads=8
    dec_depth=1
    dec_heads=8
    dec_dim=128
    mlp_ratio=3
    warm_up_steps=0
    dis_select='mlp'
    init_type='normal'
    batch_size=128
    epoch=50
    g_lr=0.00001
    d_lr=0.00001
    g2_lr=0.00001
    d2_lr=0.00001
    dropout=0.
    dec_dropout=0.
    n_critic=1
    beta1=0.9
    beta2=0.999
    resume_iters=None
    clipping_value=2
    features=False
    test_iters=10_000
    num_test_epoch=30_000
    inference_sample_num=1000
    num_workers=1
    mode="inference"
    inference_iterations=100
    inf_batch_size=1
    protein_data_dir='data/akt'
    drug_index='data/drug_smiles.index'
    drug_data_dir='data/akt'
    mol_data_dir='data'
    log_dir='experiments/logs'
    model_save_dir='experiments/models'
    # inference_model=""
    sample_dir='experiments/samples'
    result_dir="experiments/tboard_output"
    dataset_file="chembl45_train.pt"
    drug_dataset_file="akt_train.pt"
    raw_file='data/chembl_train.smi'
    drug_raw_file="data/akt_train.smi"
    inf_dataset_file="chembl45_test.pt"
    inf_drug_dataset_file='akt_test.pt'
    inf_raw_file='data/chembl_test.smi'
    inf_drug_raw_file="data/akt_test.smi"
    log_sample_step=1000
    set_seed=True
    seed=1
    resume=False
    resume_epoch=None
    resume_iter=None
    resume_directory=None
    
class ProtConfig(DrugGENConfig):
    submodel="Prot"
    inference_model="experiments/models/Prot"

class CrossLossConfig(DrugGENConfig):
    submodel="CrossLoss"
    inference_model="experiments/models/CrossLoss"

class NoTargetConfig(DrugGENConfig):
    submodel="NoTarget"
    inference_model="experiments/models/NoTarget"


model_configs = {
    "Prot": ProtConfig(),
    "CrossLoss": CrossLossConfig(),
    "NoTarget": NoTargetConfig(),
}


with st.sidebar:
    st.title("DrugGEN: Target Centric De Novo Design of Drug Candidate Molecules with Graph Generative Deep Adversarial Networks")
    st.write("[![arXiv](https://img.shields.io/badge/arXiv-2302.07868-b31b1b.svg)](https://arxiv.org/abs/2302.07868) [![github-repository](https://img.shields.io/badge/GitHub-black?logo=github)](https://github.com/HUBioDataLab/DrugGEN)")

    with st.expander("Expand to display information about models"):
        st.write("""
### Model Variations
- **DrugGEN-Prot**: composed of two GANs, incorporates protein features to the transformer decoder module of GAN2 (together with the de novo molecules generated by GAN1) to direct the target centric molecule design.
- **DrugGEN-CrossLoss**: composed of one GAN, the input of the GAN1 generator is the real molecules dataset and the GAN1 discriminator compares the generated molecules with the real inhibitors of the given target.
- **DrugGEN-NoTarget**: composed of one GAN, focuses on learning the chemical properties from the ChEMBL training dataset, no target-specific generation.

        """)    

    with st.form("model_selection_from"):
        model_name = st.radio(
            'Select a model to make inference (DrugGEN-Prot and DrugGEN-CrossLoss models design molecules to target the AKT1 protein)',
            ('DrugGEN-Prot', 'DrugGEN-CrossLoss', 'DrugGEN-NoTarget')
        )

        model_name = model_name.replace("DrugGEN-", "")

        molecule_num_input = st.number_input('Number of molecules to generate', min_value=1, max_value=100_000, value=1000, step=1)

        seed_input = st.number_input("RNG seed value (can be used for reproducibility):", min_value=0, value=42, step=1)
        
        submitted = st.form_submit_button("Start Computing")



if submitted:
# if submitted or ("submitted" in st.session_state):
    # st.session_state["submitted"] = True
    config = model_configs[model_name]

    config.inference_sample_num = molecule_num_input
    config.seed = seed_input
    
    with st.spinner(f'Creating the trainer class instance for {model_name}...'):
        trainer = Trainer(config)
    with st.spinner(f'Running inference function of {model_name} (this may take a while) ...'):
        results = trainer.inference()
    st.success(f"Inference of {model_name} took {results['runtime']:.2f} seconds.")

    with st.expander("Expand to see the generation performance scores"):
        st.write("### Generation performance scores (novelty is calculated in comparison to the training dataset)")
        st.success(f"Validity: {results['fraction_valid']}")
        st.success(f"Uniqueness: {results['uniqueness']}")
        st.success(f"Novelty: {results['novelty']}")

    with open(f'experiments/inference/{model_name}/inference_drugs.txt') as f:
        inference_drugs = f.read()
    # st.download_button(label="Click to download generated molecules", data=inference_drugs, file_name=f'DrugGEN-{model_name}_denovo_mols.smi', mime="text/plain")
    ste.download_button(label="Click to download generated molecules", data=inference_drugs, file_name=f'DrugGEN-{model_name}_denovo_mols.smi', mime="text/plain")

    
    st.write("Structures of randomly selected 12 de novo molecules from the inference set:")
    # from rdkit.Chem import Draw
# img = Draw.MolsToGridImage(mol_list, molsPerRow=5, subImgSize=(250, 250), maxMols=num_mols,
                           # legends=None, useSVG=True)
    generated_molecule_list = inference_drugs.split("\n")

    selected_molecules = random.choices(generated_molecule_list,k=12)

    selected_molecules = [Chem.MolFromSmiles(mol) for mol in selected_molecules]
    # IPythonConsole.UninstallIPythonRenderer()
    drawOptions = Draw.rdMolDraw2D.MolDrawOptions()
    drawOptions.prepareMolsBeforeDrawing = False
    drawOptions.bondLineWidth = 1.

    molecule_image = Draw.MolsToGridImage(
        selected_molecules,
        molsPerRow=3,
        subImgSize=(250, 250),
        maxMols=len(selected_molecules),
        # legends=None,
        returnPNG=False,
        # drawOptions=drawOptions,
        highlightAtomLists=None,
        highlightBondLists=None,
        
    )
    print(type(molecule_image))
    # print(type(molecule_image._data_and_metadata()))
    molecule_image.save("result_grid.png") 
    # png_data = io.BytesIO()
    # molecule_image.save(png_data, format='PNG')
    # png_data.seek(0)
    
    # Step 2: Read the PNG image data as a PIL image
    # pil_image = Image.open(png_data)
    # st.image(pil_image)
    st.image(molecule_image)

else:
    st.warning("Please select a model to make inference")