File size: 8,828 Bytes
11e0e08
 
 
 
 
951117d
11e0e08
3c5007c
 
 
11e0e08
8b74f10
11e0e08
 
 
 
951117d
11e0e08
 
951117d
11e0e08
951117d
11e0e08
0d64151
 
edc687b
0d64151
 
 
 
 
edc687b
0d64151
 
11e0e08
 
 
 
 
 
 
 
3c5007c
11e0e08
3c5007c
0d64151
 
 
 
3c5007c
0d64151
 
 
 
 
 
 
 
 
 
 
3c5007c
11e0e08
951117d
0d64151
3c5007c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
11e0e08
951117d
11e0e08
 
951117d
11e0e08
 
 
 
 
 
3c5007c
11e0e08
 
 
 
 
edc687b
11e0e08
edc687b
 
 
 
 
 
 
 
 
 
951117d
11e0e08
edc687b
 
 
 
 
 
951117d
edc687b
 
 
 
 
 
 
 
 
 
0d64151
edc687b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
11e0e08
951117d
11e0e08
 
edc687b
11e0e08
 
 
 
 
 
 
 
 
 
 
 
951117d
 
edc687b
951117d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
import gradio as gr
import cv2
import requests
import os
from ultralytics import YOLO

file_urls = [
    'https://www.dropbox.com/scl/fi/kqd1z6wby1212c6ndodb3/Pol_20_jpg.rf.133c835b66958a7d48c12deeda31a719.jpg?rlkey=uqgvs2cwvahnmju15fv1zgorg&st=snv2yvtk&dl=0',
    'https://www.dropbox.com/scl/fi/39aakapeh2y5ztk94rsyu/11e-a347-3f2d_jpg.rf.c66e5aeb57ee2ed660fdf0162156127d.jpg?rlkey=xoi3iw45vksgiejycau2ha7fh&st=etiawigv&dl=0',
    'https://www.dropbox.com/scl/fi/8f08ehy53vsemw164g8n7/Recording2024-06-26184319.mp4?rlkey=pnmov906ttodl0cm92rpvc5ta&st=2twc9pjn&dl=0'
]

def download_file(url, save_name):
    if not os.path.exists(save_name):
        file = requests.get(url)
        open(save_name, 'wb').write(file.content)

for i, url in enumerate(file_urls):
    if 'mp4' in file_urls[i]:
        download_file(file_urls[i], f"video.mp4")
    else:
        download_file(file_urls[i], f"image_{i}.jpg")

colors = {
    0: (255, 0, 0),    # Red for class 0
    1: (0, 128, 0),    # Green (dark) for class 1
    2: (0, 0, 255),    # Blue for class 2
    3: (255, 255, 0),  # Yellow for class 3
    4: (255, 0, 255),  # Magenta for class 4
    5: (0, 255, 255),  # Cyan for class 5
    6: (128, 0, 0),    # Maroon for class 6
    7: (0, 225, 0),    # Green for class 7
}

model = YOLO('modelbest.pt')
path  = [['image_0.jpg'], ['image_1.jpg']]
video_path = [['video.mp4']]

def show_preds_image(image_path):
    image = cv2.imread(image_path)
    outputs = model.predict(source=image_path)
    results = outputs[0].cpu().numpy()

    for i, det in enumerate(results.boxes.xyxy):
        class_id = int(results.boxes.cls[i])
        label = model.names[class_id]

        # Get the bounding box coordinates
        x1, y1, x2, y2 = int(det[0]), int(det[1]), int(det[2]), int(det[3])
        
        # Draw the bounding box with the specified color
        color = colors.get(class_id, (0, 0, 255))
        cv2.rectangle(image, (x1, y1), (x2, y2), color, 2, cv2.LINE_AA)
        
        # Calculate text size and position
        label_size, _ = cv2.getTextSize(label, cv2.FONT_HERSHEY_SIMPLEX, 0.75, 2)
        text_x = x1 + (x2 - x1) // 2 - label_size[0] // 2
        text_y = y1 + (y2 - y1) // 2 + label_size[1] // 2

        # Draw the label text
        cv2.putText(image, label, (text_x, text_y), cv2.FONT_HERSHEY_SIMPLEX, 0.75, color, 2, cv2.LINE_AA)

    return cv2.cvtColor(image, cv2.COLOR_BGR2RGB)

    
# def show_preds_image(image_path):
#     image = cv2.imread(image_path)
#     outputs = model.predict(source=image_path)
#     results = outputs[0].cpu().numpy()
#     for i, det in enumerate(results.boxes.xyxy):
#         cv2.rectangle(
#             image,
#             (int(det[0]), int(det[1])),
#             (int(det[2]), int(det[3])),
#             color=(0, 0, 255),
#             thickness=2,
#             lineType=cv2.LINE_AA
#         )
#     return cv2.cvtColor(image, cv2.COLOR_BGR2RGB)

inputs_image = [
    gr.Image(type="filepath", label="Input Image"),
]
outputs_image = [
    gr.Image(type="numpy", label="Output Image"),
]

interface_image = gr.Interface(
    fn=show_preds_image,
    inputs=inputs_image,
    outputs=outputs_image,
    title="Smoke Detection on Indian Roads",
    examples=path,
    cache_examples=False,
)

def show_preds_video(video_path):
    # Open the input video
    cap = cv2.VideoCapture(video_path)
    
    # Get video properties
    width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
    height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
    fps = int(cap.get(cv2.CAP_PROP_FPS))
    
    # Define the codec and create a VideoWriter object
    fourcc = cv2.VideoWriter_fourcc(*'mp4v')  # 'mp4v' for .mp4 format
    out = cv2.VideoWriter('output_video.mp4', fourcc, fps, (width, height))
    
    while cap.isOpened():
        ret, frame = cap.read()
        if not ret:
            break
        
        frame_copy = frame.copy()
        outputs = model.predict(source=frame)
        results = outputs[0].cpu().numpy()

        for i, det in enumerate(results.boxes.xyxy):
            class_id = int(results.boxes.cls[i])
            label = model.names[class_id]

            # Get the bounding box coordinates
            x1, y1, x2, y2 = int(det[0]), int(det[1]), int(det[2]), int(det[3])
            
            # Draw the bounding box with the specified color
            color = colors.get(class_id, (0, 0, 255))
            cv2.rectangle(frame_copy, (x1, y1), (x2, y2), color, 2, cv2.LINE_AA)
            
            # Calculate text size and position
            label_size, _ = cv2.getTextSize(label, cv2.FONT_HERSHEY_SIMPLEX, 0.75, 2)
            text_x = x1 + (x2 - x1) // 2 - label_size[0] // 2
            text_y = y1 + (y2 - y1) // 2 + label_size[1] // 2

            # Draw the label text
            cv2.putText(frame_copy, label, (text_x, text_y), cv2.FONT_HERSHEY_SIMPLEX, 0.75, color, 2, cv2.LINE_AA)

        # Write the frame to the output video
        out.write(frame_copy)
    
    # Release everything
    cap.release()
    out.release()

    return 'output_video.mp4'

# Updated Gradio interface
inputs_video = [
    gr.Video(format="mp4", label="Input Video"),
]
outputs_video = [
    gr.Video(label="Output Video"),
]
interface_video = gr.Interface(
    fn=show_preds_video,
    inputs=inputs_video,
    outputs=outputs_video,
    title="Pothole detector",
    examples=video_path,
    cache_examples=False,
)
gr.TabbedInterface(
    [interface_image, interface_video],
    tab_names=['Image inference', 'Video inference']
).queue().launch()


# import gradio as gr
# import cv2
# import requests
# import os
 
# from ultralytics import YOLO
# file_urls = [
#     'https://www.dropbox.com/scl/fi/kqd1z6wby1212c6ndodb3/Pol_20_jpg.rf.133c835b66958a7d48c12deeda31a719.jpg?rlkey=uqgvs2cwvahnmju15fv1zgorg&st=snv2yvtk&dl=0',
#     'https://www.dropbox.com/scl/fi/39aakapeh2y5ztk94rsyu/11e-a347-3f2d_jpg.rf.c66e5aeb57ee2ed660fdf0162156127d.jpg?rlkey=xoi3iw45vksgiejycau2ha7fh&st=etiawigv&dl=0',
#     'https://www.dropbox.com/scl/fi/8f08ehy53vsemw164g8n7/Recording2024-06-26184319.mp4?rlkey=pnmov906ttodl0cm92rpvc5ta&st=2twc9pjn&dl=0'
# ]

 
# def download_file(url, save_name):
#     url = url
#     if not os.path.exists(save_name):
#         file = requests.get(url)
#         open(save_name, 'wb').write(file.content)
 
# for i, url in enumerate(file_urls):
#     if 'mp4' in file_urls[i]:
#         download_file(
#             file_urls[i],
#             f"video.mp4"
#         )
#     else:
#         download_file(
#             file_urls[i],
#             f"image_{i}.jpg"
#         )

# model = YOLO('modelbest.pt')
# path  = [['image_0.jpg'], ['image_1.jpg']]
# video_path = [['video.mp4']]

# def show_preds_image(image_path):
#     image = cv2.imread(image_path)
#     outputs = model.predict(source=image_path)
#     results = outputs[0].cpu().numpy()
#     for i, det in enumerate(results.boxes.xyxy):
#         cv2.rectangle(
#             image,
#             (int(det[0]), int(det[1])),
#             (int(det[2]), int(det[3])),
#             color=(0, 0, 255),
#             thickness=2,
#             lineType=cv2.LINE_AA
#         )
#     return cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
 
# inputs_image = [
#     gr.components.Image(type="filepath", label="Input Image"),
# ]
# outputs_image = [
#     gr.components.Image(type="numpy", label="Output Image"),
# ]

# interface_image = gr.Interface(
#     fn=show_preds_image,
#     inputs=inputs_image,
#     outputs=outputs_image,
#     title="Pothole detector",
#     examples=path,
#     cache_examples=False,
# )


# def show_preds_video(video_path):
#     cap = cv2.VideoCapture(video_path)
#     while(cap.isOpened()):
#         ret, frame = cap.read()
#         if ret:
#             frame_copy = frame.copy()
#             outputs = model.predict(source=frame)
#             results = outputs[0].cpu().numpy()
#             for i, det in enumerate(results.boxes.xyxy):
#                 cv2.rectangle(
#                     frame_copy,
#                     (int(det[0]), int(det[1])),
#                     (int(det[2]), int(det[3])),
#                     color=(0, 0, 255),
#                     thickness=2,
#                     lineType=cv2.LINE_AA
#                 )
#             yield cv2.cvtColor(frame_copy, cv2.COLOR_BGR2RGB)
 
# inputs_video = [
#     gr.components.Video(type="filepath", label="Input Video"),
 
# ]
# outputs_video = [
#     gr.components.Image(type="numpy", label="Output Image"),
# ]
# interface_video = gr.Interface(
#     fn=show_preds_video,
#     inputs=inputs_video,
#     outputs=outputs_video,
#     title="Pothole detector",
#     examples=video_path,
#     cache_examples=False,
# )

# gr.TabbedInterface(
#     [interface_image, interface_video],
#     tab_names=['Image inference', 'Video inference']
# ).queue().launch()