Spaces:
Sleeping
Sleeping
File size: 14,604 Bytes
a77dc20 98edac6 d8e1d06 7c16bfa d8e1d06 8aef6ee a77dc20 d8e1d06 defa041 faf71f6 defa041 98edac6 defa041 98edac6 a77dc20 b1ededf 98edac6 4a6c42f defa041 a77dc20 7c16bfa 4a6c42f a77dc20 80d4148 a77dc20 80d4148 d8e1d06 80d4148 6a725a8 4a6c42f 6a725a8 a77dc20 7c16bfa 4a6c42f 7c16bfa 80d4148 defa041 4a6c42f a77dc20 4a6c42f a77dc20 7c16bfa a77dc20 4a6c42f 98edac6 a77dc20 d8e1d06 6a725a8 d8e1d06 a77dc20 d8e1d06 6a725a8 d8e1d06 a77dc20 d8e1d06 98edac6 24ce75d 98edac6 24ce75d 98edac6 24ce75d 98edac6 4a6c42f b1ededf 98edac6 a77dc20 98edac6 defa041 98edac6 80d4148 4a6c42f 98edac6 764b8c8 3e82f96 a77dc20 98edac6 090ffc1 98edac6 090ffc1 98edac6 faf71f6 090ffc1 98edac6 090ffc1 98edac6 090ffc1 98edac6 7c16bfa 090ffc1 80d4148 090ffc1 80d4148 defa041 faf71f6 090ffc1 80d4148 d8e1d06 090ffc1 80d4148 d8e1d06 80d4148 d8e1d06 090ffc1 d8e1d06 80d4148 24ce75d 98edac6 24ce75d 98edac6 24ce75d 090ffc1 98edac6 faf71f6 98edac6 a77dc20 98edac6 a77dc20 98edac6 a77dc20 faf71f6 a77dc20 3e82f96 47e375c 3e82f96 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 |
import gradio as gr
from transformers import AutoTokenizer, AutoModelForCausalLM
import torch
from huggingface_hub import login
import os
import logging
from datetime import datetime
import json
from typing import List, Dict
import warnings
import spaces
# Filter out warnings
warnings.filterwarnings('ignore')
# Configure logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
# Environment variables
HF_TOKEN = os.getenv("HUGGING_FACE_TOKEN")
MODEL_NAME = os.getenv("MODEL_NAME", "google/gemma-2b-it")
# Cache directory for model
CACHE_DIR = "/home/user/.cache/huggingface"
os.makedirs(CACHE_DIR, exist_ok=True)
# History file
HISTORY_FILE = "/home/user/review_history.json"
class Review:
def __init__(self, code: str, language: str, suggestions: str):
self.code = code
self.language = language
self.suggestions = suggestions
self.timestamp = datetime.now().isoformat()
self.response_time = 0.0
def to_dict(self):
return {
'timestamp': self.timestamp,
'language': self.language,
'code': self.code,
'suggestions': self.suggestions,
'response_time': self.response_time
}
@classmethod
def from_dict(cls, data):
review = cls(data['code'], data['language'], data['suggestions'])
review.timestamp = data['timestamp']
review.response_time = data['response_time']
return review
class CodeReviewer:
def __init__(self):
self.model = None
self.tokenizer = None
self.device = None
self.review_history: List[Review] = []
self.metrics = {
'total_reviews': 0,
'avg_response_time': 0.0,
'reviews_today': 0
}
self._initialized = False
self.load_history()
def load_history(self):
"""Load review history from file."""
try:
if os.path.exists(HISTORY_FILE):
with open(HISTORY_FILE, 'r') as f:
data = json.load(f)
self.review_history = [Review.from_dict(r) for r in data['history']]
self.metrics = data['metrics']
logger.info(f"Loaded {len(self.review_history)} reviews from history")
except Exception as e:
logger.error(f"Error loading history: {e}")
def save_history(self):
"""Save review history to file."""
try:
data = {
'history': [r.to_dict() for r in self.review_history],
'metrics': self.metrics
}
with open(HISTORY_FILE, 'w') as f:
json.dump(data, f)
logger.info("Saved review history")
except Exception as e:
logger.error(f"Error saving history: {e}")
@spaces.GPU
def ensure_initialized(self):
"""Ensure model is initialized."""
if not self._initialized:
self.initialize_model()
self._initialized = True
def initialize_model(self):
"""Initialize the model and tokenizer."""
try:
if HF_TOKEN:
login(token=HF_TOKEN, add_to_git_credential=False)
logger.info("Loading tokenizer...")
self.tokenizer = AutoTokenizer.from_pretrained(
MODEL_NAME,
token=HF_TOKEN,
trust_remote_code=True,
cache_dir=CACHE_DIR
)
special_tokens = {
'pad_token': '[PAD]',
'eos_token': '</s>',
'bos_token': '<s>'
}
num_added = self.tokenizer.add_special_tokens(special_tokens)
logger.info(f"Added {num_added} special tokens")
logger.info("Tokenizer loaded successfully")
logger.info("Loading model...")
self.model = AutoModelForCausalLM.from_pretrained(
MODEL_NAME,
device_map="auto",
torch_dtype=torch.float16,
trust_remote_code=True,
low_cpu_mem_usage=True,
cache_dir=CACHE_DIR,
token=HF_TOKEN
)
if num_added > 0:
logger.info("Resizing model embeddings for special tokens")
self.model.resize_token_embeddings(len(self.tokenizer))
self.device = next(self.model.parameters()).device
logger.info(f"Model loaded successfully on {self.device}")
self._initialized = True
return True
except Exception as e:
logger.error(f"Error initializing model: {e}")
self._initialized = False
return False
def create_review_prompt(self, code: str, language: str) -> str:
"""Create a structured prompt for code review."""
return f"""Review this {language} code. List specific points in these sections:
Issues:
Improvements:
Best Practices:
Security:
Code:
```{language}
{code}
```"""
@spaces.GPU
def review_code(self, code: str, language: str) -> str:
"""Perform code review using the model."""
try:
if not self._initialized and not self.initialize_model():
return "Error: Model initialization failed. Please try again later."
start_time = datetime.now()
prompt = self.create_review_prompt(code, language)
try:
inputs = self.tokenizer(
prompt,
return_tensors="pt",
truncation=True,
max_length=512,
padding=True
)
if inputs is None:
raise ValueError("Failed to tokenize input")
inputs = inputs.to(self.device)
except Exception as token_error:
logger.error(f"Tokenization error: {token_error}")
return "Error: Failed to process input code. Please try again."
try:
with torch.no_grad():
outputs = self.model.generate(
**inputs,
max_new_tokens=512,
do_sample=True,
temperature=0.7,
top_p=0.95,
num_beams=1,
early_stopping=True,
pad_token_id=self.tokenizer.pad_token_id,
eos_token_id=self.tokenizer.eos_token_id
)
except Exception as gen_error:
logger.error(f"Generation error: {gen_error}")
return "Error: Failed to generate review. Please try again."
try:
response = self.tokenizer.decode(outputs[0], skip_special_tokens=True)
suggestions = response[len(prompt):].strip()
except Exception as decode_error:
logger.error(f"Decoding error: {decode_error}")
return "Error: Failed to decode model output. Please try again."
# Create and save review
end_time = datetime.now()
review = Review(code, language, suggestions)
review.response_time = (end_time - start_time).total_seconds()
# Update metrics first
self.metrics['total_reviews'] += 1
total_time = self.metrics['avg_response_time'] * (self.metrics['total_reviews'] - 1)
total_time += review.response_time
self.metrics['avg_response_time'] = total_time / self.metrics['total_reviews']
today = datetime.now().date()
# Add review to history
self.review_history.append(review)
# Update today's reviews count
self.metrics['reviews_today'] = sum(
1 for r in self.review_history
if datetime.fromisoformat(r.timestamp).date() == today
)
# Save to file
self.save_history()
if self.device and self.device.type == "cuda":
del inputs, outputs
torch.cuda.empty_cache()
return suggestions
except Exception as e:
logger.error(f"Error during code review: {e}")
return f"Error performing code review: {str(e)}"
def update_metrics(self, review: Review):
"""Update metrics with new review."""
self.metrics['total_reviews'] += 1
total_time = self.metrics['avg_response_time'] * (self.metrics['total_reviews'] - 1)
total_time += review.response_time
self.metrics['avg_response_time'] = total_time / self.metrics['total_reviews']
today = datetime.now().date()
self.metrics['reviews_today'] = sum(
1 for r in self.review_history
if datetime.fromisoformat(r.timestamp).date() == today
)
def get_history(self) -> List[Dict]:
"""Get formatted review history."""
return [
{
'timestamp': r.timestamp,
'language': r.language,
'code': r.code,
'suggestions': r.suggestions,
'response_time': f"{r.response_time:.2f}s"
}
for r in reversed(self.review_history[-10:])
]
def get_metrics(self) -> Dict:
"""Get current metrics."""
return {
'Total Reviews': self.metrics['total_reviews'],
'Average Response Time': f"{self.metrics['avg_response_time']:.2f}s",
'Reviews Today': self.metrics['reviews_today'],
'Device': str(self.device) if self.device else "Not initialized"
}
# Initialize reviewer
reviewer = CodeReviewer()
# Create Gradio interface
with gr.Blocks(theme=gr.themes.Soft()) as iface:
gr.Markdown("# Code Review Assistant")
gr.Markdown("An automated code review system powered by Gemma-2b")
with gr.Tabs():
with gr.Tab("Review Code"):
with gr.Row():
with gr.Column():
code_input = gr.Textbox(
lines=10,
placeholder="Enter your code here...",
label="Code"
)
language_input = gr.Dropdown(
choices=["python", "javascript", "java", "cpp", "typescript", "go", "rust"],
value="python",
label="Language"
)
submit_btn = gr.Button("Submit for Review", variant="primary")
with gr.Column():
output = gr.Textbox(
label="Review Results",
lines=10
)
with gr.Tab("History"):
with gr.Row():
refresh_history = gr.Button("Refresh History", variant="secondary")
history_output = gr.Textbox(
label="Review History",
lines=20,
value="Click 'Refresh History' to view review history"
)
with gr.Tab("Metrics"):
with gr.Row():
refresh_metrics = gr.Button("Refresh Metrics", variant="secondary")
metrics_output = gr.JSON(
label="Performance Metrics"
)
@spaces.GPU
def review_code_interface(code: str, language: str) -> str:
if not code.strip():
return "Please enter some code to review."
try:
reviewer.ensure_initialized()
result = reviewer.review_code(code, language)
return result
except Exception as e:
logger.error(f"Interface error: {e}")
return f"Error: {str(e)}"
def get_history_interface() -> str:
try:
history = reviewer.get_history()
if not history:
return "No reviews yet."
result = ""
for review in history:
result += f"Time: {review['timestamp']}\n"
result += f"Language: {review['language']}\n"
result += f"Response Time: {review['response_time']}\n"
result += "Code:\n```\n" + review['code'] + "\n```\n"
result += "Suggestions:\n" + review['suggestions'] + "\n"
result += "-" * 80 + "\n\n"
return result
except Exception as e:
logger.error(f"History error: {e}")
return "Error retrieving history"
def get_metrics_interface() -> Dict:
try:
metrics = reviewer.get_metrics()
if not metrics:
return {
'Total Reviews': 0,
'Average Response Time': '0.00s',
'Reviews Today': 0,
'Device': str(reviewer.device) if reviewer.device else "Not initialized"
}
return metrics
except Exception as e:
logger.error(f"Metrics error: {e}")
return {"error": str(e)}
def update_all_outputs(code: str, language: str) -> tuple:
"""Update all outputs after code review."""
result = review_code_interface(code, language)
history = get_history_interface()
metrics = get_metrics_interface()
return result, history, metrics
# Connect the interface
submit_btn.click(
update_all_outputs,
inputs=[code_input, language_input],
outputs=[output, history_output, metrics_output]
)
refresh_history.click(
get_history_interface,
outputs=history_output
)
refresh_metrics.click(
get_metrics_interface,
outputs=metrics_output
)
# Add example inputs
gr.Examples(
examples=[
["""def add_numbers(a, b):
return a + b""", "python"],
["""function calculateSum(numbers) {
let sum = 0;
for(let i = 0; i < numbers.length; i++) {
sum += numbers[i];
}
return sum;
}""", "javascript"]
],
inputs=[code_input, language_input]
)
# Launch the app
if __name__ == "__main__":
iface.launch(
server_name="0.0.0.0",
server_port=7860,
show_error=True,
quiet=False
)
|