File size: 8,501 Bytes
b474ae1
06f01b3
b474ae1
d33fe62
dfe1769
 
 
1fa796c
5b4c268
ae610aa
 
 
 
f146007
 
5b4c268
d33fe62
 
5a73339
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d33fe62
 
 
 
 
 
 
 
 
 
ae610aa
 
 
 
f146007
ae610aa
 
 
b474ae1
d33fe62
 
 
 
 
 
 
 
 
 
5b4c268
ae610aa
 
 
 
a1792a1
d33fe62
13f0f94
dfe1769
a1792a1
 
 
 
 
 
 
 
 
1fa796c
dfe1769
a1792a1
 
13f0f94
a1792a1
dfe1769
 
13f0f94
dfe1769
 
 
 
ae610aa
 
 
 
dfe1769
 
ae610aa
d33fe62
1fa796c
 
 
 
dfe1769
 
 
 
 
a1792a1
d33fe62
dfe1769
d33fe62
dfe1769
a1792a1
dfe1769
1fa796c
dfe1769
 
 
1fa796c
 
dfe1769
 
b474ae1
 
d33fe62
ae610aa
d33fe62
1fa796c
 
 
8760634
 
d33fe62
8760634
 
 
 
 
 
dfe1769
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1fa796c
 
dfe1769
a1792a1
dfe1769
 
 
ae610aa
 
 
 
d33fe62
 
 
 
ae610aa
 
 
 
d33fe62
 
5b4c268
ae610aa
 
 
 
06f01b3
 
dfe1769
8760634
dfe1769
06f01b3
b474ae1
8760634
 
 
 
 
 
7012184
d33fe62
8760634
 
 
dfe1769
8760634
 
 
d33fe62
dfe1769
b474ae1
8760634
 
d33fe62
8cb3a33
a1792a1
 
dfe1769
 
 
 
 
 
 
 
a1792a1
dfe1769
 
 
b474ae1
dfe1769
d33fe62
dfe1769
b474ae1
 
dfe1769
 
 
b474ae1
5b4c268
ae610aa
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
import json
import gradio as gr
import duckdb
from functools import lru_cache
import pandas as pd
import plotly.express as px
import openai
import os

# =========================
# Configuration and Setup
# =========================

# Load the Parquet dataset path
dataset_path = 'sample_contract_df.parquet'  # Update with your Parquet file path

# Provided schema
schema = [
    {"column_name": "department_ind_agency", "column_type": "VARCHAR"},
    {"column_name": "cgac", "column_type": "BIGINT"},
    {"column_name": "sub_tier", "column_type": "VARCHAR"},
    {"column_name": "fpds_code", "column_type": "VARCHAR"},
    {"column_name": "office", "column_type": "VARCHAR"},
    {"column_name": "aac_code", "column_type": "VARCHAR"},
    {"column_name": "posteddate", "column_type": "VARCHAR"},
    {"column_name": "type", "column_type": "VARCHAR"},
    {"column_name": "basetype", "column_type": "VARCHAR"},
    {"column_name": "popstreetaddress", "column_type": "VARCHAR"},
    {"column_name": "popcity", "column_type": "VARCHAR"},
    {"column_name": "popstate", "column_type": "VARCHAR"},
    {"column_name": "popzip", "column_type": "VARCHAR"},
    {"column_name": "popcountry", "column_type": "VARCHAR"},
    {"column_name": "active", "column_type": "VARCHAR"},
    {"column_name": "awardnumber", "column_type": "VARCHAR"},
    {"column_name": "awarddate", "column_type": "VARCHAR"},
    {"column_name": "award", "column_type": "DOUBLE"},
    {"column_name": "awardee", "column_type": "VARCHAR"},
    {"column_name": "state", "column_type": "VARCHAR"},
    {"column_name": "city", "column_type": "VARCHAR"},
    {"column_name": "zipcode", "column_type": "VARCHAR"},
    {"column_name": "countrycode", "column_type": "VARCHAR"}
]

# Cache the schema loading
@lru_cache(maxsize=1)
def get_schema():
    return schema

# Map column names to their types
COLUMN_TYPES = {col['column_name']: col['column_type'] for col in get_schema()}

# =========================
# Database Interaction
# =========================

def load_dataset_schema():
    """
    Loads the dataset schema into DuckDB by creating a view.
    """
    con = duckdb.connect()
    try:
        # Drop the view if it exists to avoid errors
        con.execute("DROP VIEW IF EXISTS contract_data")
        con.execute(f"CREATE VIEW contract_data AS SELECT * FROM '{dataset_path}'")
        return True
    except Exception as e:
        print(f"Error loading dataset schema: {e}")
        return False
    finally:
        con.close()

# =========================
# OpenAI API Integration
# =========================

async def parse_query(nl_query):
    """
    Converts a natural language query into a SQL query using OpenAI's GPT-4-turbo model.
    """
    messages = [
        {"role": "system", "content": (
            "You are an assistant that converts natural language queries into SQL queries "
            "for a DuckDB database named 'contract_data'. Use the provided schema to form accurate SQL queries."
        )},
        {"role": "user", "content": (
            f"Schema:\n{json.dumps(schema, indent=2)}\n\nNatural Language Query:\n\"{nl_query}\"\n\nSQL Query:"
        )}
    ]

    try:
        response = await openai.ChatCompletion.acreate(
            model="gpt-3.5-turbo",
            messages=messages,
            temperature=0,
            max_tokens=150,
        )
        sql_query = response.choices[0].message['content'].strip()
        return sql_query
    except Exception as e:
        return f"Error generating SQL query: {e}"

# =========================
# Plotting Utilities
# =========================

def detect_plot_intent(nl_query):
    """
    Detects if the user's query involves plotting based on the presence of specific keywords.
    """
    plot_keywords = [
        'plot', 'graph', 'chart', 'distribution', 'visualize', 'histogram',
        'bar chart', 'line chart', 'scatter plot', 'pie chart'
    ]
    for keyword in plot_keywords:
        if keyword in nl_query.lower():
            return True
    return False

async def generate_sql_and_plot_code(query):
    """
    Generates SQL query and plotting code based on the natural language input.
    """
    is_plot = detect_plot_intent(query)
    sql_query = await parse_query(query)
    plot_code = ""
    if is_plot and not sql_query.startswith("Error"):
        # Generate plot code based on the query
        plot_code = """
import plotly.express as px
fig = px.bar(result_df, x='x_column', y='y_column', title='Generated Plot')
fig.update_layout(title_x=0.5)
"""
    return sql_query, plot_code

def execute_query(sql_query):
    """
    Executes the SQL query and returns results or an error message.
    """
    if sql_query.startswith("Error"):
        return None, sql_query  # Pass the error message forward

    try:
        con = duckdb.connect()
        con.execute(f"CREATE OR REPLACE VIEW contract_data AS SELECT * FROM '{dataset_path}'")
        result_df = con.execute(sql_query).fetchdf()
        con.close()
        return result_df, ""
    except Exception as e:
        return None, f"Error executing query: {e}"

def generate_plot(plot_code, result_df):
    """
    Executes the plot code to generate a plot from the result DataFrame.
    """
    if not plot_code.strip():
        return None, "No plot code provided."
    try:
        if result_df.empty:
            return None, "Result DataFrame is empty."
        columns = result_df.columns.tolist()
        if len(columns) < 2:
            return None, "Not enough columns to plot."
        plot_code = plot_code.replace('x_column', columns[0])
        plot_code = plot_code.replace('y_column', columns[1])

        local_vars = {'result_df': result_df, 'px': px}
        exec(plot_code, {}, local_vars)
        fig = local_vars.get('fig', None)
        return fig, "" if fig else "Plot could not be generated."
    except Exception as e:
        return None, f"Error generating plot: {e}"

# =========================
# Schema Display
# =========================

@lru_cache(maxsize=1)
def get_schema_json():
    return json.dumps(get_schema(), indent=2)

# =========================
# Initialize Dataset Schema
# =========================

if not load_dataset_schema():
    raise Exception("Failed to load dataset schema. Please check the dataset path and format.")

# =========================
# Gradio Application UI
# =========================

with gr.Blocks() as demo:
    gr.Markdown("""
    # Parquet SQL Query and Plotting App

    **Query and visualize data** in `sample_contract_df.parquet`
    """)

    with gr.Tabs():
        with gr.TabItem("Query Data"):
            with gr.Row():
                with gr.Column(scale=1):
                    query = gr.Textbox(
                        label="Natural Language Query",
                        placeholder='e.g., "Show all awards greater than 1,000,000 in California"',
                        lines=4
                    )
                    btn_generate = gr.Button("Generate SQL")
                    sql_out = gr.Code(label="Generated SQL Query", language="sql")
                    plot_code_out = gr.Code(label="Generated Plot Code", language="python")
                    btn_execute = gr.Button("Execute Query")
                    error_out = gr.Markdown("", visible=False)
                with gr.Column(scale=2):
                    results_out = gr.Dataframe(label="Query Results", interactive=False)
                    plot_out = gr.Plot(label="Plot")

        with gr.TabItem("Dataset Schema"):
            gr.Markdown("### Dataset Schema")
            schema_display = gr.JSON(label="Schema", value=json.loads(get_schema_json()))

    async def on_generate_click(nl_query):
        sql_query, plot_code = await generate_sql_and_plot_code(nl_query)
        return sql_query, plot_code

    def on_execute_click(sql_query, plot_code):
        result_df, error_msg = execute_query(sql_query)
        if error_msg:
            return None, None, error_msg
        if plot_code.strip():
            fig, plot_error = generate_plot(plot_code, result_df)
            return result_df, fig, plot_error if plot_error else ""
        else:
            return result_df, None, ""

    btn_generate.click(
        fn=on_generate_click,
        inputs=query,
        outputs=[sql_out, plot_code_out],
    )
    btn_execute.click(
        fn=on_execute_click,
        inputs=[sql_out, plot_code_out],
        outputs=[results_out, plot_out, error_out],
    )

demo.launch()