Spaces:
Sleeping
Sleeping
File size: 8,501 Bytes
b474ae1 06f01b3 b474ae1 d33fe62 dfe1769 1fa796c 5b4c268 ae610aa f146007 5b4c268 d33fe62 5a73339 d33fe62 ae610aa f146007 ae610aa b474ae1 d33fe62 5b4c268 ae610aa a1792a1 d33fe62 13f0f94 dfe1769 a1792a1 1fa796c dfe1769 a1792a1 13f0f94 a1792a1 dfe1769 13f0f94 dfe1769 ae610aa dfe1769 ae610aa d33fe62 1fa796c dfe1769 a1792a1 d33fe62 dfe1769 d33fe62 dfe1769 a1792a1 dfe1769 1fa796c dfe1769 1fa796c dfe1769 b474ae1 d33fe62 ae610aa d33fe62 1fa796c 8760634 d33fe62 8760634 dfe1769 1fa796c dfe1769 a1792a1 dfe1769 ae610aa d33fe62 ae610aa d33fe62 5b4c268 ae610aa 06f01b3 dfe1769 8760634 dfe1769 06f01b3 b474ae1 8760634 7012184 d33fe62 8760634 dfe1769 8760634 d33fe62 dfe1769 b474ae1 8760634 d33fe62 8cb3a33 a1792a1 dfe1769 a1792a1 dfe1769 b474ae1 dfe1769 d33fe62 dfe1769 b474ae1 dfe1769 b474ae1 5b4c268 ae610aa |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 |
import json
import gradio as gr
import duckdb
from functools import lru_cache
import pandas as pd
import plotly.express as px
import openai
import os
# =========================
# Configuration and Setup
# =========================
# Load the Parquet dataset path
dataset_path = 'sample_contract_df.parquet' # Update with your Parquet file path
# Provided schema
schema = [
{"column_name": "department_ind_agency", "column_type": "VARCHAR"},
{"column_name": "cgac", "column_type": "BIGINT"},
{"column_name": "sub_tier", "column_type": "VARCHAR"},
{"column_name": "fpds_code", "column_type": "VARCHAR"},
{"column_name": "office", "column_type": "VARCHAR"},
{"column_name": "aac_code", "column_type": "VARCHAR"},
{"column_name": "posteddate", "column_type": "VARCHAR"},
{"column_name": "type", "column_type": "VARCHAR"},
{"column_name": "basetype", "column_type": "VARCHAR"},
{"column_name": "popstreetaddress", "column_type": "VARCHAR"},
{"column_name": "popcity", "column_type": "VARCHAR"},
{"column_name": "popstate", "column_type": "VARCHAR"},
{"column_name": "popzip", "column_type": "VARCHAR"},
{"column_name": "popcountry", "column_type": "VARCHAR"},
{"column_name": "active", "column_type": "VARCHAR"},
{"column_name": "awardnumber", "column_type": "VARCHAR"},
{"column_name": "awarddate", "column_type": "VARCHAR"},
{"column_name": "award", "column_type": "DOUBLE"},
{"column_name": "awardee", "column_type": "VARCHAR"},
{"column_name": "state", "column_type": "VARCHAR"},
{"column_name": "city", "column_type": "VARCHAR"},
{"column_name": "zipcode", "column_type": "VARCHAR"},
{"column_name": "countrycode", "column_type": "VARCHAR"}
]
# Cache the schema loading
@lru_cache(maxsize=1)
def get_schema():
return schema
# Map column names to their types
COLUMN_TYPES = {col['column_name']: col['column_type'] for col in get_schema()}
# =========================
# Database Interaction
# =========================
def load_dataset_schema():
"""
Loads the dataset schema into DuckDB by creating a view.
"""
con = duckdb.connect()
try:
# Drop the view if it exists to avoid errors
con.execute("DROP VIEW IF EXISTS contract_data")
con.execute(f"CREATE VIEW contract_data AS SELECT * FROM '{dataset_path}'")
return True
except Exception as e:
print(f"Error loading dataset schema: {e}")
return False
finally:
con.close()
# =========================
# OpenAI API Integration
# =========================
async def parse_query(nl_query):
"""
Converts a natural language query into a SQL query using OpenAI's GPT-4-turbo model.
"""
messages = [
{"role": "system", "content": (
"You are an assistant that converts natural language queries into SQL queries "
"for a DuckDB database named 'contract_data'. Use the provided schema to form accurate SQL queries."
)},
{"role": "user", "content": (
f"Schema:\n{json.dumps(schema, indent=2)}\n\nNatural Language Query:\n\"{nl_query}\"\n\nSQL Query:"
)}
]
try:
response = await openai.ChatCompletion.acreate(
model="gpt-3.5-turbo",
messages=messages,
temperature=0,
max_tokens=150,
)
sql_query = response.choices[0].message['content'].strip()
return sql_query
except Exception as e:
return f"Error generating SQL query: {e}"
# =========================
# Plotting Utilities
# =========================
def detect_plot_intent(nl_query):
"""
Detects if the user's query involves plotting based on the presence of specific keywords.
"""
plot_keywords = [
'plot', 'graph', 'chart', 'distribution', 'visualize', 'histogram',
'bar chart', 'line chart', 'scatter plot', 'pie chart'
]
for keyword in plot_keywords:
if keyword in nl_query.lower():
return True
return False
async def generate_sql_and_plot_code(query):
"""
Generates SQL query and plotting code based on the natural language input.
"""
is_plot = detect_plot_intent(query)
sql_query = await parse_query(query)
plot_code = ""
if is_plot and not sql_query.startswith("Error"):
# Generate plot code based on the query
plot_code = """
import plotly.express as px
fig = px.bar(result_df, x='x_column', y='y_column', title='Generated Plot')
fig.update_layout(title_x=0.5)
"""
return sql_query, plot_code
def execute_query(sql_query):
"""
Executes the SQL query and returns results or an error message.
"""
if sql_query.startswith("Error"):
return None, sql_query # Pass the error message forward
try:
con = duckdb.connect()
con.execute(f"CREATE OR REPLACE VIEW contract_data AS SELECT * FROM '{dataset_path}'")
result_df = con.execute(sql_query).fetchdf()
con.close()
return result_df, ""
except Exception as e:
return None, f"Error executing query: {e}"
def generate_plot(plot_code, result_df):
"""
Executes the plot code to generate a plot from the result DataFrame.
"""
if not plot_code.strip():
return None, "No plot code provided."
try:
if result_df.empty:
return None, "Result DataFrame is empty."
columns = result_df.columns.tolist()
if len(columns) < 2:
return None, "Not enough columns to plot."
plot_code = plot_code.replace('x_column', columns[0])
plot_code = plot_code.replace('y_column', columns[1])
local_vars = {'result_df': result_df, 'px': px}
exec(plot_code, {}, local_vars)
fig = local_vars.get('fig', None)
return fig, "" if fig else "Plot could not be generated."
except Exception as e:
return None, f"Error generating plot: {e}"
# =========================
# Schema Display
# =========================
@lru_cache(maxsize=1)
def get_schema_json():
return json.dumps(get_schema(), indent=2)
# =========================
# Initialize Dataset Schema
# =========================
if not load_dataset_schema():
raise Exception("Failed to load dataset schema. Please check the dataset path and format.")
# =========================
# Gradio Application UI
# =========================
with gr.Blocks() as demo:
gr.Markdown("""
# Parquet SQL Query and Plotting App
**Query and visualize data** in `sample_contract_df.parquet`
""")
with gr.Tabs():
with gr.TabItem("Query Data"):
with gr.Row():
with gr.Column(scale=1):
query = gr.Textbox(
label="Natural Language Query",
placeholder='e.g., "Show all awards greater than 1,000,000 in California"',
lines=4
)
btn_generate = gr.Button("Generate SQL")
sql_out = gr.Code(label="Generated SQL Query", language="sql")
plot_code_out = gr.Code(label="Generated Plot Code", language="python")
btn_execute = gr.Button("Execute Query")
error_out = gr.Markdown("", visible=False)
with gr.Column(scale=2):
results_out = gr.Dataframe(label="Query Results", interactive=False)
plot_out = gr.Plot(label="Plot")
with gr.TabItem("Dataset Schema"):
gr.Markdown("### Dataset Schema")
schema_display = gr.JSON(label="Schema", value=json.loads(get_schema_json()))
async def on_generate_click(nl_query):
sql_query, plot_code = await generate_sql_and_plot_code(nl_query)
return sql_query, plot_code
def on_execute_click(sql_query, plot_code):
result_df, error_msg = execute_query(sql_query)
if error_msg:
return None, None, error_msg
if plot_code.strip():
fig, plot_error = generate_plot(plot_code, result_df)
return result_df, fig, plot_error if plot_error else ""
else:
return result_df, None, ""
btn_generate.click(
fn=on_generate_click,
inputs=query,
outputs=[sql_out, plot_code_out],
)
btn_execute.click(
fn=on_execute_click,
inputs=[sql_out, plot_code_out],
outputs=[results_out, plot_out, error_out],
)
demo.launch()
|