File size: 9,351 Bytes
b474ae1
06f01b3
b474ae1
d33fe62
7012184
dfe1769
 
 
5b4c268
f146007
 
5b4c268
d33fe62
 
5a73339
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d33fe62
 
 
 
 
 
 
 
 
 
 
 
f146007
b474ae1
d33fe62
 
 
 
 
 
 
 
 
 
5b4c268
dfe1769
8760634
d33fe62
dfe1769
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d33fe62
dfe1769
 
 
 
 
 
 
 
d33fe62
dfe1769
d33fe62
dfe1769
 
 
 
 
 
 
 
 
 
 
b474ae1
d33fe62
b474ae1
d33fe62
 
 
8760634
 
d33fe62
 
8760634
 
 
 
dfe1769
8760634
 
dfe1769
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d33fe62
 
 
 
 
 
 
 
5b4c268
06f01b3
 
 
dfe1769
8760634
dfe1769
8760634
 
 
dfe1769
7012184
dfe1769
 
7012184
 
 
d33fe62
 
dfe1769
 
d33fe62
 
 
dfe1769
 
7012184
 
06f01b3
b474ae1
8760634
d33fe62
8760634
 
 
 
 
7012184
d33fe62
8760634
 
 
dfe1769
8760634
 
 
d33fe62
dfe1769
b474ae1
d33fe62
8760634
 
d33fe62
8cb3a33
8760634
dfe1769
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b474ae1
dfe1769
d33fe62
dfe1769
b474ae1
 
dfe1769
 
 
b474ae1
5b4c268
06f01b3
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
import json
import gradio as gr
import duckdb
from functools import lru_cache
from transformers import pipeline
import pandas as pd
import plotly.express as px
import openai

# Load the Parquet dataset path
dataset_path = 'sample_contract_df.parquet'  # Update with your Parquet file path

# Provided schema
schema = [
    {"column_name": "department_ind_agency", "column_type": "VARCHAR"},
    {"column_name": "cgac", "column_type": "BIGINT"},
    {"column_name": "sub_tier", "column_type": "VARCHAR"},
    {"column_name": "fpds_code", "column_type": "VARCHAR"},
    {"column_name": "office", "column_type": "VARCHAR"},
    {"column_name": "aac_code", "column_type": "VARCHAR"},
    {"column_name": "posteddate", "column_type": "VARCHAR"},
    {"column_name": "type", "column_type": "VARCHAR"},
    {"column_name": "basetype", "column_type": "VARCHAR"},
    {"column_name": "popstreetaddress", "column_type": "VARCHAR"},
    {"column_name": "popcity", "column_type": "VARCHAR"},
    {"column_name": "popstate", "column_type": "VARCHAR"},
    {"column_name": "popzip", "column_type": "VARCHAR"},
    {"column_name": "popcountry", "column_type": "VARCHAR"},
    {"column_name": "active", "column_type": "VARCHAR"},
    {"column_name": "awardnumber", "column_type": "VARCHAR"},
    {"column_name": "awarddate", "column_type": "VARCHAR"},
    {"column_name": "award", "column_type": "DOUBLE"},
    {"column_name": "awardee", "column_type": "VARCHAR"},
    {"column_name": "state", "column_type": "VARCHAR"},
    {"column_name": "city", "column_type": "VARCHAR"},
    {"column_name": "zipcode", "column_type": "VARCHAR"},
    {"column_name": "countrycode", "column_type": "VARCHAR"}
]

# Cache the schema loading
@lru_cache(maxsize=1)
def get_schema():
    return schema

# Map column names to their types
COLUMN_TYPES = {col['column_name']: col['column_type'] for col in get_schema()}

# Function to load the dataset schema into DuckDB
@lru_cache(maxsize=1)
def load_dataset_schema():
    con = duckdb.connect()
    try:
        # Drop the view if it exists to avoid errors
        con.execute("DROP VIEW IF EXISTS contract_data")
        con.execute(f"CREATE VIEW contract_data AS SELECT * FROM '{dataset_path}'")
        return True
    except Exception as e:
        print(f"Error loading dataset schema: {e}")
        return False
    finally:
        con.close()

# Advanced Natural Language to SQL Parser using OpenAI's GPT-3
def parse_query(nl_query):
    """
    Converts a natural language query into SQL query using OpenAI GPT-3.
    """
    openai.api_key = 'YOUR_OPENAI_API_KEY'  # Replace with your OpenAI API key

    prompt = f"""
    Convert the following natural language query into a SQL query for a DuckDB database. Use 'contract_data' as the table name.
    Schema:
    {json.dumps(schema, indent=2)}
    Query:
    "{nl_query}"
    """
    try:
        response = openai.Completion.create(
            engine="text-davinci-003",
            prompt=prompt,
            temperature=0,
            max_tokens=150,
            top_p=1,
            n=1,
            stop=None
        )
        sql_query = response.choices[0].text.strip()
        return sql_query
    except Exception as e:
        return f"Error generating SQL query: {e}"

# Function to detect if the user wants a plot
def detect_plot_intent(nl_query):
    """
    Detects if the user's query involves plotting.
    """
    plot_keywords = ['plot', 'graph', 'chart', 'distribution', 'visualize', 'histogram', 'bar chart', 'line chart', 'scatter plot', 'pie chart']
    for keyword in plot_keywords:
        if keyword in nl_query.lower():
            return True
    return False

# Generate SQL and Plot Code based on user query
def generate_sql_and_plot_code(query):
    """
    Generates SQL query and plotting code based on the natural language input.
    """
    is_plot = detect_plot_intent(query)
    sql_query = parse_query(query)
    plot_code = ""
    if is_plot:
        # Generate plot code based on the query
        # For simplicity, we'll generate a basic plot code
        plot_code = """
import plotly.express as px
fig = px.bar(result_df, x='x_column', y='y_column')
"""
    return sql_query, plot_code

# Execute the SQL query and return results or error
def execute_query(sql_query):
    """
    Executes the SQL query and returns the results as a DataFrame.
    """
    try:
        con = duckdb.connect()
        # Ensure the view is created
        con.execute(f"CREATE OR REPLACE VIEW contract_data AS SELECT * FROM '{dataset_path}'")
        result_df = con.execute(sql_query).fetchdf()
        con.close()
        return result_df, ""
    except Exception as e:
        # In case of error, return None and error message
        return None, f"Error executing query: {e}"

# Generate and display plot
def generate_plot(plot_code, result_df):
    """
    Executes the plot code to generate a plot from the result DataFrame.
    """
    if not plot_code.strip():
        return None, "No plot code provided."
    try:
        # Replace placeholders in plot_code with actual column names
        if result_df.empty:
            return None, "Result DataFrame is empty."
        columns = result_df.columns.tolist()
        if len(columns) < 2:
            return None, "Not enough columns to plot."
        plot_code = plot_code.replace('x_column', columns[0])
        plot_code = plot_code.replace('y_column', columns[1])

        # Execute the plot code
        local_vars = {'result_df': result_df}
        exec(plot_code, {'px': px}, local_vars)
        fig = local_vars.get('fig', None)
        if fig:
            return fig, ""
        else:
            return None, "Plot could not be generated."
    except Exception as e:
        return None, f"Error generating plot: {e}"

# Cache the schema JSON for display
@lru_cache(maxsize=1)
def get_schema_json():
    return json.dumps(get_schema(), indent=2)

# Initialize the dataset schema
if not load_dataset_schema():
    raise Exception("Failed to load dataset schema. Please check the dataset path and format.")

# Gradio app UI
with gr.Blocks() as demo:
    gr.Markdown("""
    # Parquet SQL Query and Plotting App

    **Query and visualize data** in `sample_contract_df.parquet`

    ## Instructions

    1. **Describe the data you want to retrieve or plot**: For example:
       - `Show all awards greater than 1,000,000 in California`
       - `Plot the distribution of awards by state`
       - `Show a bar chart of total awards per department`
       - `List awardees who received multiple awards along with award amounts`
       - `Number of awards issued by each department division`

    2. **Generate SQL**: Click "Generate SQL" to see the SQL query that will be executed.
    3. **Execute Query**: Click "Execute Query" to run the query and view the results.
    4. **View Plot**: If your query involves plotting, the plot will be displayed.
    5. **View Dataset Schema**: Check the "Dataset Schema" tab to understand available columns and their types.

    ## Example Queries

    - `Plot the total award amount by state`
    - `Show a histogram of awards over time`
    - `award greater than 1000000 and state equal to "CA"`
    - `List awards where department_ind_agency contains "Defense"`
    """)

    with gr.Tabs():
        # Query Tab
        with gr.TabItem("Query Data"):
            with gr.Row():
                with gr.Column(scale=1):
                    query = gr.Textbox(
                        label="Natural Language Query",
                        placeholder='e.g., "Show all awards greater than 1,000,000 in California"',
                        lines=4
                    )
                    btn_generate = gr.Button("Generate SQL")
                    sql_out = gr.Code(label="Generated SQL Query", language="sql")
                    plot_code_out = gr.Code(label="Generated Plot Code", language="python")
                    btn_execute = gr.Button("Execute Query")
                    error_out = gr.Markdown("", visible=False)
                with gr.Column(scale=2):
                    results_out = gr.Dataframe(label="Query Results", interactive=False)
                    plot_out = gr.Plot(label="Plot")

        # Schema Tab
        with gr.TabItem("Dataset Schema"):
            gr.Markdown("### Dataset Schema")
            schema_display = gr.JSON(label="Schema", value=json.loads(get_schema_json()))

    # Set up click events
    def on_generate_click(nl_query):
        sql_query, plot_code = generate_sql_and_plot_code(nl_query)
        return sql_query, plot_code

    def on_execute_click(sql_query, plot_code):
        result_df, error_msg = execute_query(sql_query)
        if error_msg:
            return None, None, error_msg
        if plot_code.strip():
            fig, plot_error = generate_plot(plot_code, result_df)
            if plot_error:
                return result_df, None, plot_error
            else:
                return result_df, fig, ""
        else:
            return result_df, None, ""

    btn_generate.click(
        fn=on_generate_click,
        inputs=query,
        outputs=[sql_out, plot_code_out],
    )
    btn_execute.click(
        fn=on_execute_click,
        inputs=[sql_out, plot_code_out],
        outputs=[results_out, plot_out, error_out],
    )

# Launch the app
demo.launch()