File size: 9,207 Bytes
56a50b1
a4d9380
94a1319
a6b4b4a
07efbbd
94a1319
07efbbd
62baa62
07efbbd
56a50b1
4b17a12
07efbbd
 
 
 
 
 
 
 
62baa62
07efbbd
62baa62
07efbbd
 
62baa62
6a0f76d
 
 
 
07efbbd
 
 
 
 
 
a6b4b4a
07efbbd
 
 
 
 
 
 
 
 
a6b4b4a
07efbbd
62baa62
07efbbd
 
94a1319
07efbbd
c850a8d
a6b4b4a
07efbbd
a6b4b4a
07efbbd
 
 
 
 
 
 
 
 
 
 
c850a8d
a0c7be1
 
 
c850a8d
a6b4b4a
07efbbd
a6b4b4a
 
07efbbd
 
 
 
 
 
 
 
 
 
c850a8d
 
a6b4b4a
 
 
6a0f76d
 
 
c850a8d
 
a0c7be1
 
a6b4b4a
 
c850a8d
a6b4b4a
 
 
 
07efbbd
 
a6b4b4a
c850a8d
 
 
 
07efbbd
a6b4b4a
07efbbd
a6b4b4a
07efbbd
 
 
 
 
 
 
a6b4b4a
07efbbd
ebc268d
a6b4b4a
07efbbd
 
 
 
a6b4b4a
 
 
 
07efbbd
 
 
 
 
e4120b8
 
addbe9f
e4120b8
 
a6b4b4a
07efbbd
a6b4b4a
 
07efbbd
 
 
addbe9f
07efbbd
94a1319
a6b4b4a
 
07efbbd
 
 
 
 
 
 
a6b4b4a
 
 
 
 
 
 
 
 
 
 
 
07efbbd
a6b4b4a
07efbbd
 
a6b4b4a
 
 
 
 
 
 
 
 
 
 
07efbbd
 
 
a6b4b4a
6a0f76d
 
07efbbd
6a0f76d
 
 
 
 
 
 
 
07efbbd
6a0f76d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a6b4b4a
07efbbd
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
import streamlit as st
import cv2
import numpy as np
import os
import sqlite3
from PIL import Image
from keras.models import load_model
from huggingface_hub import HfApi
import tempfile

# Constants
KNOWN_FACES_DIR = "known_faces"
DATABASE = "students.db"
EMOTION_MODEL_FILE = "CNN_Model_acc_75.h5"
EMOTION_LABELS = ["Angry", "Disgust", "Fear", "Happy", "Sad", "Surprise", "Neutral"]
REPO_NAME = "face_and_emotion_detection"
REPO_ID = "LovnishVerma/" + REPO_NAME
IMG_SHAPE = 48
hf_token = os.getenv("upload")

# Ensure the Hugging Face token is available
if not hf_token:
    st.error("Hugging Face token not found. Please set the environment variable.")
    st.stop()

# Initialize Hugging Face API
api = HfApi()

# Create Hugging Face repository
def create_hugging_face_repo():
    try:
        api.create_repo(repo_id=REPO_ID, repo_type="space", space_sdk="streamlit", token=hf_token, exist_ok=True)
        st.success(f"Repository '{REPO_NAME}' is ready on Hugging Face!")
    except Exception as e:
        st.error(f"Error creating Hugging Face repository: {e}")

# Load the emotion model once, using caching
@st.cache_resource
def load_emotion_model():
    try:
        model = load_model(EMOTION_MODEL_FILE)
        return model
    except Exception as e:
        st.error(f"Error loading emotion model: {e}")
        st.stop()

emotion_model = load_emotion_model()

# Initialize the face recognizer
face_recognizer = cv2.face.LBPHFaceRecognizer_create()

# Database functions
def initialize_database():
    """
    Initializes the SQLite database by creating a table to store student data.
    """
    with sqlite3.connect(DATABASE) as conn:
        conn.execute("""
            CREATE TABLE IF NOT EXISTS students (
                id INTEGER PRIMARY KEY AUTOINCREMENT,
                name TEXT NOT NULL,
                roll_no TEXT NOT NULL UNIQUE,
                image_path TEXT NOT NULL,
                timestamp DATETIME DEFAULT CURRENT_TIMESTAMP
            )
        """)
        conn.commit()

# Initialize the database
initialize_database()

def save_to_database(name, roll_no, image_path):
    """
    Saves student data (name, roll number, image path) to the SQLite database.
    Ensures roll number is unique.
    """
    with sqlite3.connect(DATABASE) as conn:
        try:
            conn.execute("""
                INSERT INTO students (name, roll_no, image_path)
                VALUES (?, ?, ?)
            """, (name, roll_no, image_path))
            conn.commit()
            st.success("Data saved successfully!")
        except sqlite3.IntegrityError:
            st.error("Roll number already exists!")

def save_image_to_hugging_face(image, name, roll_no):
    """
    Saves the captured image locally in the 'known_faces' directory and uploads it to Hugging Face.
    """
    if not os.path.exists(KNOWN_FACES_DIR):
        os.makedirs(KNOWN_FACES_DIR)
    
    filename = f"{name}_{roll_no}.jpg"
    local_path = os.path.join(KNOWN_FACES_DIR, filename)
    
    # Saving the image to the correct directory
    image.save(local_path)

    try:
        api.upload_file(
            path_or_fileobj=local_path,
            path_in_repo=filename,
            repo_id=REPO_ID,
            repo_type="space",
            token=hf_token
        )
        st.success(f"Image uploaded to Hugging Face: {filename}")
    except Exception as e:
        st.error(f"Error uploading image to Hugging Face: {e}")
    
    return local_path

# Load known faces
def load_known_faces():
    """
    Loads known faces from the 'known_faces' directory and trains the recognizer.
    """
    known_faces = []
    known_names = []
    
    for image_name in os.listdir(KNOWN_FACES_DIR):
        if image_name.endswith(('.jpg', '.jpeg', '.png')):
            image_path = os.path.join(KNOWN_FACES_DIR, image_name)
            image = cv2.imread(image_path)
            gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
            faces = cv2.CascadeClassifier(cv2.data.haarcascades + 'haarcascade_frontalface_default.xml').detectMultiScale(
                gray, scaleFactor=1.1, minNeighbors=5, minSize=(30, 30)
            )
            
            for (x, y, w, h) in faces:
                roi_gray = gray[y:y+h, x:x+w]
                known_faces.append(roi_gray)
                known_names.append(image_name.split('.')[0])  # Assuming file name is the person's name
    
    if known_faces:
        face_recognizer.train(known_faces, np.array([i for i in range(len(known_faces))]))
    else:
        st.warning("No known faces found for training.")
    
    return known_names

# Load known faces at the start
known_names = load_known_faces()

# Process frame for both emotion detection and face recognition
def process_frame(frame):
    gray_frame = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
    faces = cv2.CascadeClassifier(cv2.data.haarcascades + 'haarcascade_frontalface_default.xml').detectMultiScale(
        gray_frame, scaleFactor=1.1, minNeighbors=5, minSize=(30, 30)
    )

    result_text = ""
    for (x, y, w, h) in faces:
        roi_gray = gray_frame[y:y+h, x:x+w]
        roi_color = frame[y:y+h, x:x+w]
        face_roi = cv2.resize(roi_color, (IMG_SHAPE, IMG_SHAPE))
        face_roi = cv2.cvtColor(face_roi, cv2.COLOR_BGR2RGB)
        face_roi = np.expand_dims(face_roi, axis=0) / 255.0
        
        predictions = emotion_model.predict(face_roi)
        emotion = EMOTION_LABELS[np.argmax(predictions[0])]
        
        label, confidence = face_recognizer.predict(roi_gray)
        name = "Unknown"
        if confidence < 100:
            name = known_names[label]

        result_text = f"{name} is feeling {emotion}"

        cv2.rectangle(frame, (x, y), (x + w, y + h), (0, 255, 0), 2)
        cv2.putText(frame, result_text, (x, y - 10), cv2.FONT_HERSHEY_SIMPLEX, 1, (0, 255, 0), 2)

    return frame, result_text

# Video feed handler
def video_feed(video_source):
    frame_placeholder = st.empty()
    text_placeholder = st.empty()

    while True:
        ret, frame = video_source.read()
        if not ret:
            break

        frame, result_text = process_frame(frame)

        frame_placeholder.image(frame, channels="BGR", use_column_width=True)
        text_placeholder.markdown(f"<h3 style='text-align: center;'>{result_text}</h3>", unsafe_allow_html=True)

# Streamlit interface
def main():
    st.title("Student Registration with Face Recognition and Emotion Detection")

    # Step 1: Student Registration
    registration_mode = st.sidebar.radio("Choose an option", ["Register Student", "Face and Emotion Recognition"])

    if registration_mode == "Register Student":
        name = st.text_input("Enter your name")
        roll_no = st.text_input("Enter your roll number")
        
        capture_mode = st.radio("Choose an option to upload your image", ["Use Webcam", "Upload File"])
        
        if capture_mode == "Use Webcam":
            picture = st.camera_input("Take a picture")
        else:
            picture = st.file_uploader("Upload an image", type=["jpg", "jpeg", "png"])

        if st.button("Register"):
            if not name or not roll_no:
                st.error("Please fill in both name and roll number.")
            elif not picture:
                st.error("Please upload or capture an image.")
            else:
                try:
                    image = Image.open(picture)
                    image_path = save_image_to_hugging_face(image, name, roll_no)
                    save_to_database(name, roll_no, image_path)
                except Exception as e:
                    st.error(f"An error occurred: {e}")

    elif registration_mode == "Face and Emotion Recognition":
        upload_choice = st.radio("Choose input source", ["Upload Image", "Upload Video", "Camera"])

        if upload_choice == "Camera":
            image = st.camera_input("Take a picture")
            if image:
                frame = np.array(Image.open(image))
                frame, result_text = process_frame(frame)
                st.image(frame, caption='Processed Image', use_column_width=True)
                st.markdown(f"<h3 style='text-align: center;'>{result_text}</h3>", unsafe_allow_html=True)
        elif upload_choice == "Upload Image":
            uploaded_image = st.file_uploader("Upload Image", type=["png", "jpg", "jpeg", "gif"])
            if uploaded_image:
                image = Image.open(uploaded_image)
                frame = np.array(image)
                frame, result_text = process_frame(frame)
                st.image(frame, caption='Processed Image', use_column_width=True)
                st.markdown(f"<h3 style='text-align: center;'>{result_text}</h3>", unsafe_allow_html=True)
        elif upload_choice == "Upload Video":
            video_file = st.file_uploader("Upload Video", type=["mp4", "mov", "avi"])
            if video_file:
                temp_video_file = tempfile.NamedTemporaryFile(delete=False)
                temp_video_file.write(video_file.read())
                temp_video_file.close()
                video_source = cv2.VideoCapture(temp_video_file.name)
                video_feed(video_source)

if __name__ == "__main__":
    main()