File size: 3,431 Bytes
5558e45
da2c9bd
 
14637b5
 
da2c9bd
 
 
 
a204dfd
da2c9bd
14637b5
da2c9bd
a204dfd
3cb6db9
da2c9bd
 
 
 
 
 
3cb6db9
 
da2c9bd
 
 
3cb6db9
da2c9bd
 
3cb6db9
da2c9bd
 
 
 
 
 
beba0cd
4df79e9
da2c9bd
a204dfd
fd0291a
a204dfd
3cb6db9
 
fd0291a
da2c9bd
3c9ea56
ab2e1ab
 
7ac57fe
14637b5
fc0ac32
 
14637b5
3cb6db9
d2905e7
5c133e7
ee72d9a
 
d2905e7
ee72d9a
 
91d2eb2
 
 
 
 
6a88159
919851b
 
 
 
 
 
 
 
fc0ac32
3c9ea56
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
import gradio as gr
import pandas as pd
import numpy as np
from langdetect import detect
from vaderSentiment.vaderSentiment import SentimentIntensityAnalyzer
from sklearn.model_selection import train_test_split
from sklearn.svm import SVR
from sklearn.metrics import mean_squared_error


data = pd.read_csv("modeled_data.csv")
analyzer = SentimentIntensityAnalyzer()


def sample_model(df, regressor):
    X = df.drop("rate",axis=1)
    y = df["rate"]
    
    X_train, X_test, y_train, y_test = train_test_split(X, y, test_size = 0.2, random_state=1)
    
    model = regressor
    model.fit(X_train, y_train)
    y_pred = model.predict(X_test)
    
    rmse = np.sqrt(mean_squared_error(y_test, y_pred))
    
    return model


def calculate_sentiments(comment, model):
    
    negative_score = analyzer.polarity_scores(comment)["neg"]
    neutral_score = analyzer.polarity_scores(comment)["neu"]
    positive_score = analyzer.polarity_scores(comment)["pos"]
    compound_score = analyzer.polarity_scores(comment)["compound"]
    rate_pred = model.predict([[negative_score, neutral_score, positive_score, compound_score]])
    
    return round(negative_score,2), round(neutral_score,2), round(positive_score,2), round(compound_score,2), round(rate_pred[0],2)

    
def take_input(comment):
    
    cons_tuned_svr = sample_model(data, SVR(C=3, kernel="rbf", tol=0.001))
    return calculate_sentiments(comment, cons_tuned_svr)


with gr.Blocks() as demo:
    gr.Markdown("# AIN311 Project P05 - MOOC Recommendation")
    gr.Markdown("## Generating a Rating from User Comment")
    with gr.Column():
        gr.Markdown("""
                    ##### Thanks for your interest and taking your time.
                    ##### Tell us about your personal experience enrolling in this course. Was it the right match for you?
                    """)
        input_comment = gr.Textbox(placeholder="Write your comment here...", show_label = False, lines=2)
        button = gr.Button("What is the Rating I Have Given? Click me to Learn", variant="secondary").style(full_width=True)
        with gr.Row():
            with gr.Column():
                gr.Markdown("#### Generated Rating from Your Comment")
                rating = gr.Number().style(show_label=False)
            with gr.Column():
                gr.Markdown("#### Sentiment Scores of Your Comment")
                with gr.Row():
                    negscore = gr.Number(label="Negativity Score")
                    neuscore = gr.Number(label="Neutrality Score")
                    posscore = gr.Number(label="Positivity Score")
                    compscore = gr.Number(label="Compound Score")
        
        gr.Examples(
                     [["Totally enjoyed this course. Learnt whole new dimension of data science and its attributes"], 
                      ["The bad part of the course is that it doesn't get a person into the logics of some things right away or even doesn't get into them at all."], 
                      ["Not for the beginners very difficult to understand i gain nothing from this course i watch videos again and again but nothing fits in my mind"]],
                     [input_comment],
                     [[negscore, neuscore, posscore, compscore, rating]],
                     fn=take_input
        )
    button.click(fn=take_input, inputs=input_comment, outputs=[negscore, neuscore, posscore, compscore, rating])

demo.launch()