File size: 4,706 Bytes
9346f1c
5fdb95f
9346f1c
4596a70
2a5f9fb
 
1ffc326
8c49cb6
 
 
 
 
 
976f398
df66f6e
 
 
 
 
 
 
 
9d22eee
5c1f78d
df66f6e
37b23b1
 
 
 
 
 
 
 
 
170ba5c
8c49cb6
2a73469
10f9b3c
50df158
d084b26
5c1f78d
8b28d2b
d084b26
d614158
d084b26
71d6be9
d614158
5c1f78d
 
 
 
d084b26
 
 
26286b2
d614158
 
 
71d6be9
d614158
 
 
 
 
 
 
 
a885f09
5c1f78d
d614158
 
614ee1f
37b23b1
8b28d2b
 
5f8b961
5fdb95f
 
 
5f8b961
 
 
 
293337d
 
 
 
 
c314f20
 
293337d
 
 
 
 
 
 
 
 
5f8b961
5fdb95f
 
82392c3
5fdb95f
 
 
 
 
 
 
 
 
5f8b961
 
293337d
5fdb95f
293337d
5fdb95f
5f8b961
 
01233b7
 
58733e4
6e8f400
10f9b3c
5fdb95f
 
37b23b1
d614158
5fdb95f
37b23b1
f2bc0a5
5fdb95f
6e8f400
0227006
d16cee2
 
 
 
 
67109fc
d16cee2
adb0416
 
d16cee2
10f9b3c
a2790cb
10f9b3c
5fdb95f
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
import gradio as gr
from gradio_leaderboard import Leaderboard, ColumnFilter, SelectColumns
import pandas as pd
from apscheduler.schedulers.background import BackgroundScheduler
from huggingface_hub import snapshot_download

from src.about import (
    CITATION_BUTTON_LABEL,
    CITATION_BUTTON_TEXT,
    INTRODUCTION_TEXT,
    LLM_BENCHMARKS_TEXT,
    TITLE,
)
from src.display.css_html_js import custom_css
from src.display.utils import (
    BENCHMARK_COLS,
    COLS,
    EVAL_COLS,
    EVAL_TYPES,
    AutoEvalColumn,
    ModelType,
    fields,
    WeightType,
    Precision,
)
from src.envs import (
    API,
    EVAL_RESULTS_PATH_CDM,
    EVAL_RESULTS_PATH_CDM_FI,
    REPO_ID,
    RESULTS_REPO_CDM,
    RESULTS_REPO_CDM_FI,
    TOKEN,
)
from src.populate import get_leaderboard_df


def restart_space():
    API.restart_space(repo_id=REPO_ID)


### Space initialisation
try:
    print(EVAL_RESULTS_PATH_CDM)
    snapshot_download(
        repo_id=RESULTS_REPO_CDM,
        local_dir=EVAL_RESULTS_PATH_CDM,
        repo_type="dataset",
        tqdm_class=None,
        etag_timeout=30,
        token=TOKEN,
    )
except Exception:
    restart_space()

try:
    print(EVAL_RESULTS_PATH_CDM_FI)
    snapshot_download(
        repo_id=RESULTS_REPO_CDM_FI,
        local_dir=EVAL_RESULTS_PATH_CDM_FI,
        repo_type="dataset",
        tqdm_class=None,
        etag_timeout=30,
        token=TOKEN,
    )
except Exception:
    restart_space()


LEADERBOARD_DF_CDM = get_leaderboard_df(EVAL_RESULTS_PATH_CDM, COLS, BENCHMARK_COLS)
LEADERBOARD_DF_CDM_FI = get_leaderboard_df(EVAL_RESULTS_PATH_CDM_FI, COLS, BENCHMARK_COLS)


def init_leaderboard(dataframe):
    if dataframe is None or dataframe.empty:
        print("Warning: Empty dataframe provided to leaderboard")
        return gr.Dataframe(
            headers=COLS, datatype=[c.type for c in fields(AutoEvalColumn)], label="No results available"
        )

    print(f"Initializing leaderboard with {len(dataframe)} rows")
    print(f"Columns: {dataframe.columns.tolist()}")

    # Convert the dataframe to ensure proper types
    for col in dataframe.columns:
        if col == AutoEvalColumn.model.name:
            # Keep model column as is since it contains HTML
            continue
        # elif col == AutoEvalColumn.still_on_hub.name:
        #     dataframe[col] = dataframe[col].astype(bool)
        elif col in [AutoEvalColumn.seq_length.name, AutoEvalColumn.model_quantization_bits.name]:
            dataframe[col] = dataframe[col].astype(int)
        else:
            # Convert other numeric columns to float
            try:
                dataframe[col] = dataframe[col].astype(float)
            except:
                pass

    try:
        return Leaderboard(
            value=dataframe,
            headers=COLS,
            datatype=[c.type for c in fields(AutoEvalColumn)],
            select_columns=SelectColumns(
                default_selection=[c.name for c in fields(AutoEvalColumn) if c.displayed_by_default],
                cant_deselect=[c.name for c in fields(AutoEvalColumn) if c.never_hidden],
                label="Select Columns to Display:",
            ),
            search_columns=[AutoEvalColumn.model.name],
            interactive=False,
        )
    except Exception as e:
        print(f"Error initializing leaderboard: {e}")
        # Instead of showing error message, try simpler table display
        return gr.Dataframe(
            value=dataframe, headers=COLS, datatype=[c.type for c in fields(AutoEvalColumn)], interactive=False
        )


demo = gr.Blocks(css=custom_css)
with demo:
    gr.HTML(TITLE)
    gr.Markdown(INTRODUCTION_TEXT, elem_classes="markdown-text")

    with gr.Tabs(elem_classes="tab-buttons") as tabs:
        with gr.TabItem("MIMIC CDM", elem_id="llm-benchmark-tab-table", id=0):
            leaderboard_cdm = init_leaderboard(LEADERBOARD_DF_CDM)

        with gr.TabItem("MIMIC CDM FI", elem_id="llm-benchmark-tab-table", id=1):
            leaderboard_cdm_fi = init_leaderboard(LEADERBOARD_DF_CDM_FI)

        with gr.TabItem("πŸ“ About", elem_id="llm-benchmark-tab-table", id=2):
            gr.Markdown(LLM_BENCHMARKS_TEXT, elem_classes="markdown-text")

    with gr.Row():
        with gr.Accordion("πŸ“™ Citation", open=False):
            citation_button = gr.Textbox(
                value=CITATION_BUTTON_TEXT,
                label=CITATION_BUTTON_LABEL,
                lines=20,
                elem_id="citation-button",
                show_copy_button=True,
            )

scheduler = BackgroundScheduler()
scheduler.add_job(restart_space, "interval", seconds=1800)
scheduler.start()
demo.queue(default_concurrency_limit=40).launch(share=True)