Spaces:
Running
Running
File size: 4,706 Bytes
9346f1c 5fdb95f 9346f1c 4596a70 2a5f9fb 1ffc326 8c49cb6 976f398 df66f6e 9d22eee 5c1f78d df66f6e 37b23b1 170ba5c 8c49cb6 2a73469 10f9b3c 50df158 d084b26 5c1f78d 8b28d2b d084b26 d614158 d084b26 71d6be9 d614158 5c1f78d d084b26 26286b2 d614158 71d6be9 d614158 a885f09 5c1f78d d614158 614ee1f 37b23b1 8b28d2b 5f8b961 5fdb95f 5f8b961 293337d c314f20 293337d 5f8b961 5fdb95f 82392c3 5fdb95f 5f8b961 293337d 5fdb95f 293337d 5fdb95f 5f8b961 01233b7 58733e4 6e8f400 10f9b3c 5fdb95f 37b23b1 d614158 5fdb95f 37b23b1 f2bc0a5 5fdb95f 6e8f400 0227006 d16cee2 67109fc d16cee2 adb0416 d16cee2 10f9b3c a2790cb 10f9b3c 5fdb95f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 |
import gradio as gr
from gradio_leaderboard import Leaderboard, ColumnFilter, SelectColumns
import pandas as pd
from apscheduler.schedulers.background import BackgroundScheduler
from huggingface_hub import snapshot_download
from src.about import (
CITATION_BUTTON_LABEL,
CITATION_BUTTON_TEXT,
INTRODUCTION_TEXT,
LLM_BENCHMARKS_TEXT,
TITLE,
)
from src.display.css_html_js import custom_css
from src.display.utils import (
BENCHMARK_COLS,
COLS,
EVAL_COLS,
EVAL_TYPES,
AutoEvalColumn,
ModelType,
fields,
WeightType,
Precision,
)
from src.envs import (
API,
EVAL_RESULTS_PATH_CDM,
EVAL_RESULTS_PATH_CDM_FI,
REPO_ID,
RESULTS_REPO_CDM,
RESULTS_REPO_CDM_FI,
TOKEN,
)
from src.populate import get_leaderboard_df
def restart_space():
API.restart_space(repo_id=REPO_ID)
### Space initialisation
try:
print(EVAL_RESULTS_PATH_CDM)
snapshot_download(
repo_id=RESULTS_REPO_CDM,
local_dir=EVAL_RESULTS_PATH_CDM,
repo_type="dataset",
tqdm_class=None,
etag_timeout=30,
token=TOKEN,
)
except Exception:
restart_space()
try:
print(EVAL_RESULTS_PATH_CDM_FI)
snapshot_download(
repo_id=RESULTS_REPO_CDM_FI,
local_dir=EVAL_RESULTS_PATH_CDM_FI,
repo_type="dataset",
tqdm_class=None,
etag_timeout=30,
token=TOKEN,
)
except Exception:
restart_space()
LEADERBOARD_DF_CDM = get_leaderboard_df(EVAL_RESULTS_PATH_CDM, COLS, BENCHMARK_COLS)
LEADERBOARD_DF_CDM_FI = get_leaderboard_df(EVAL_RESULTS_PATH_CDM_FI, COLS, BENCHMARK_COLS)
def init_leaderboard(dataframe):
if dataframe is None or dataframe.empty:
print("Warning: Empty dataframe provided to leaderboard")
return gr.Dataframe(
headers=COLS, datatype=[c.type for c in fields(AutoEvalColumn)], label="No results available"
)
print(f"Initializing leaderboard with {len(dataframe)} rows")
print(f"Columns: {dataframe.columns.tolist()}")
# Convert the dataframe to ensure proper types
for col in dataframe.columns:
if col == AutoEvalColumn.model.name:
# Keep model column as is since it contains HTML
continue
# elif col == AutoEvalColumn.still_on_hub.name:
# dataframe[col] = dataframe[col].astype(bool)
elif col in [AutoEvalColumn.seq_length.name, AutoEvalColumn.model_quantization_bits.name]:
dataframe[col] = dataframe[col].astype(int)
else:
# Convert other numeric columns to float
try:
dataframe[col] = dataframe[col].astype(float)
except:
pass
try:
return Leaderboard(
value=dataframe,
headers=COLS,
datatype=[c.type for c in fields(AutoEvalColumn)],
select_columns=SelectColumns(
default_selection=[c.name for c in fields(AutoEvalColumn) if c.displayed_by_default],
cant_deselect=[c.name for c in fields(AutoEvalColumn) if c.never_hidden],
label="Select Columns to Display:",
),
search_columns=[AutoEvalColumn.model.name],
interactive=False,
)
except Exception as e:
print(f"Error initializing leaderboard: {e}")
# Instead of showing error message, try simpler table display
return gr.Dataframe(
value=dataframe, headers=COLS, datatype=[c.type for c in fields(AutoEvalColumn)], interactive=False
)
demo = gr.Blocks(css=custom_css)
with demo:
gr.HTML(TITLE)
gr.Markdown(INTRODUCTION_TEXT, elem_classes="markdown-text")
with gr.Tabs(elem_classes="tab-buttons") as tabs:
with gr.TabItem("MIMIC CDM", elem_id="llm-benchmark-tab-table", id=0):
leaderboard_cdm = init_leaderboard(LEADERBOARD_DF_CDM)
with gr.TabItem("MIMIC CDM FI", elem_id="llm-benchmark-tab-table", id=1):
leaderboard_cdm_fi = init_leaderboard(LEADERBOARD_DF_CDM_FI)
with gr.TabItem("π About", elem_id="llm-benchmark-tab-table", id=2):
gr.Markdown(LLM_BENCHMARKS_TEXT, elem_classes="markdown-text")
with gr.Row():
with gr.Accordion("π Citation", open=False):
citation_button = gr.Textbox(
value=CITATION_BUTTON_TEXT,
label=CITATION_BUTTON_LABEL,
lines=20,
elem_id="citation-button",
show_copy_button=True,
)
scheduler = BackgroundScheduler()
scheduler.add_job(restart_space, "interval", seconds=1800)
scheduler.start()
demo.queue(default_concurrency_limit=40).launch(share=True)
|