File size: 4,214 Bytes
c5c9dba a3d8df2 2907ba4 a3d8df2 93b3457 2907ba4 70716fb a3d8df2 35c2cfe 2907ba4 93b3457 70716fb a3d8df2 c5c9dba 2907ba4 c5c9dba 93b3457 c5c9dba 2125012 4ec5db2 7fc12c8 8af57c7 7fc12c8 8af57c7 03d8e3d 8af57c7 03d8e3d 8af57c7 2907ba4 4ec5db2 03d8e3d 8af57c7 7fc12c8 8af57c7 7fc12c8 8af57c7 7fc12c8 2907ba4 03d8e3d 8af57c7 03d8e3d 8af57c7 7fc12c8 8af57c7 7fc12c8 8af57c7 2907ba4 a3d8df2 8af57c7 a3d8df2 a9b92f5 03d8e3d a3d8df2 3054620 a3d8df2 c5c9dba |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 |
import gradio as gr
import numpy as np
import pickle
# Cargar el modelo
with open('model_rf.pkl', 'rb') as file:
rf = pickle.load(file)
# Cargar el scaler
with open('my-standard-scaler.pkl', 'rb') as file:
s_c = pickle.load(file)
# Definir la funci贸n de predicci贸n
def predict_1(SOC: float):
SOC = SOC/1.724 # SOC <- MO/1.724
prediction = 1.58 + np.exp(-0.07*SOC)
return prediction.round(2)
def predict_2(SOC: float, Cy: float):
SOC = SOC/1.724 # SOC <- MO/1.724
prediction = np.array(2.03 - 0.008*Cy - 0.008*SOC)
return prediction.round(2)
def predict_3(SOC: float, Cy: float, eCa: float, eMg: float, eK: float, eNa: float, eAlH: float):
SOC = SOC/1.724 # SOC <- MO/1.724
ECEC = eCa + eMg + eK + eNa + eAlH
xK = eK/ECEC
prediction = np.array(1.53 - 0.076*SOC + 0.004*Cy - 2.04*xK)
return prediction.round(2)
def predict_4(pH: float, EC: float, CCE: float, SOC: float, Sa: float, Si: float,
Cy: float, CEC: float, eCa: float, eMg: float, eK: float, eNa: float, eAlH: float):
SOC = SOC/1.724 # SOC <- MO/1.724
ECEC = eCa + eMg + eK + eNa + eAlH
xCa = eCa/ECEC
xMg = eMg/ECEC
xK = eK/ECEC
xNa = eNa/ECEC
xAlH = eAlH/ECEC
BS1 = (eCa + eMg + eK + eNa)/CEC
BS2 = (eCa + eMg + eK + eNa)/ECEC
input_features = np.array([[pH, EC, CCE, SOC, Sa, Si, Cy, CEC, ECEC, xCa, xMg, xK, xNa, xAlH, BS1, BS2]])
input_features_scale = s_c.transform(input_features)
prediction = rf.predict(input_features_scale)[0].round(2)
return prediction
# Crear la interfaz Gradio
with gr.Blocks() as demo:
gr.Markdown("# Estimaci贸n de la densidad aparente del suelo")
with gr.Row():
with gr.Column():
gr.Markdown("**M.O. (%)**")
SOC = gr.Number(label="", value=2.9408, interactive=True, elem_classes="bold-label")
gr.Markdown("**K<sup>+</sup> (meq/100g)**")
eK = gr.Number(label="", value=0.47, interactive=True)
gr.Markdown("**pH (1:1) en H<sub>2</sub>O**")
pH = gr.Number(label="", value=7.09, interactive=True)
gr.Markdown("**C.E. (1:1 dS/m)**")
EC = gr.Number(label="", value=0.31, interactive=True)
gr.Markdown("**Mg<sup>2+</sup> (meq/100g)**")
eMg = gr.Number(label="", value=3.47, interactive=True)
with gr.Column():
gr.Markdown("**Arcilla (%)**")
Cy = gr.Number(label="", value=31.0, interactive=True)
gr.Markdown("**Na<sup>+</sup> (meq/100g)**")
eNa = gr.Number(label="", value=0.15, interactive=True)
gr.Markdown("**CaCO<sub>2</sub> (%)**")
CCE = gr.Number(label="", value=0.20, interactive=True)
gr.Markdown("**Arena (%)**")
Sa = gr.Number(label="", value=45.0, interactive=True)
with gr.Column():
gr.Markdown("**Ca<sup>2+</sup> (meq/100g)**")
eCa = gr.Number(label="", value=19.44, interactive=True)
gr.Markdown("**Al<sup>3+</sup> + H<sup>+</sup> (meq/100g)**")
eAlH = gr.Number(label="", value=0.0, interactive=True)
gr.Markdown("**Limo (%)**")
Si = gr.Number(label="", value=24.0, interactive=True)
gr.Markdown("**CIC (meq/100g)**")
CEC = gr.Number(label="", value=23.52, interactive=True)
with gr.Row():
with gr.Column():
submit_1 = gr.Button(value='Abdelbaki')
with gr.Column():
submit_2 = gr.Button(value='Benites')
with gr.Column():
submit_3 = gr.Button(value='MLRegression')
with gr.Row():
submit_4 = gr.Button(value='Random Forest')
output = gr.Textbox(label="Densidad aparente del suelo (g/cm3).", interactive=False)
submit_1.click(predict_1, inputs=[SOC], outputs=[output])
submit_2.click(predict_2, inputs=[SOC, Cy], outputs=[output])
submit_3.click(predict_3, inputs=[SOC, Cy, eCa, eMg, eK, eNa, eAlH], outputs=[output])
submit_4.click(predict_4, inputs=[pH , EC, CCE, SOC, Sa, Si, Cy, CEC, eCa, eMg, eK, eNa, eAlH], outputs=[output])
demo.launch(share=False, debug=False) |