Spaces:
Running
Running
File size: 48,119 Bytes
cfca8a4 ec0919d a3a2513 5908dc9 b158e1f bf37f2a bdd2ad4 0a0cfdc bdd2ad4 03e8b8d 0683428 501ebd3 66b15fc 5290229 6e2fc47 b3fd9db 0bd453f b3fd9db 6e2fc47 b3fd9db e0d0dc1 b3fd9db 6ccb05b b3fd9db 1efb6f4 5908dc9 97f43e5 e1ac1c9 5908dc9 7d4300a 84fdbc6 7d4300a 84fdbc6 7d4300a 84fdbc6 7d4300a 84fdbc6 0d60bb3 84fdbc6 5908dc9 cfca8a4 7d4300a 66b15fc 97f43e5 66b15fc 97f43e5 181a454 7d4300a 181a454 7d4300a 181a454 61138f4 7d4300a 181a454 97f43e5 66b15fc 181a454 62d539c 7d4300a 181a454 97f43e5 181a454 7d4300a 62d539c 7d4300a 181a454 505bce0 181a454 ffd9cd1 181a454 c96b30c ffd9cd1 181a454 7d4300a 0dfd8e3 b5b74c3 0dfd8e3 b5b74c3 0dfd8e3 7d4300a bf37f2a 7d4300a bf37f2a 4db1c62 6efb0ba bf37f2a 4db1c62 bf37f2a 7d4300a bf37f2a 7d4300a 6b04774 4383f88 fdb138f 4383f88 c0da614 af14165 66b15fc af14165 66b15fc a2862ab af14165 a2862ab 66b15fc af14165 66b15fc af14165 7d4300a f544d25 5750d1a fdc95c9 f544d25 7d4300a ffd9cd1 f544d25 ffd9cd1 f544d25 ffd9cd1 f544d25 5bb2875 b3fd9db e0c7f38 6e2fc47 e0c7f38 948a760 e0c7f38 66b15fc a47d265 66b15fc a47d265 66b15fc af14165 66b15fc ec8124e 66b15fc ec8124e 66b15fc ec8124e 66b15fc ec8124e 66b15fc ec8124e 66b15fc ec8124e 66b15fc ec8124e 66b15fc ec8124e 66b15fc ec8124e 66b15fc ec8124e 66b15fc ec8124e 66b15fc ec8124e 66b15fc ec8124e 66b15fc ec8124e 66b15fc ec8124e 66b15fc e274713 66b15fc af14165 66b15fc af14165 66b15fc af14165 66b15fc af14165 66b15fc af14165 66b15fc af14165 66b15fc af14165 66b15fc ec8124e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 |
import os
import sys
import numpy as np
import pandas as pd
import sympy
from sympy import sympify, lambdify
import subprocess
import tempfile
import shutil
from pathlib import Path
from datetime import datetime
import warnings
from multiprocessing import cpu_count
from sklearn.base import BaseEstimator, RegressorMixin
is_julia_warning_silenced = False
def install(julia_project=None): # pragma: no cover
import julia
julia.install()
julia_project = _get_julia_project(julia_project)
init_julia()
from julia import Pkg
Pkg.activate(f"{_escape_filename(julia_project)}")
Pkg.update()
Pkg.instantiate()
Pkg.precompile()
warnings.warn(
"It is recommended to restart Python after installing PySR's dependencies,"
" so that the Julia environment is properly initialized."
)
Main = None
already_ran = False
sympy_mappings = {
"div": lambda x, y: x / y,
"mult": lambda x, y: x * y,
"sqrt_abs": lambda x: sympy.sqrt(abs(x)),
"square": lambda x: x ** 2,
"cube": lambda x: x ** 3,
"plus": lambda x, y: x + y,
"sub": lambda x, y: x - y,
"neg": lambda x: -x,
"pow": lambda x, y: abs(x) ** y,
"cos": sympy.cos,
"sin": sympy.sin,
"tan": sympy.tan,
"cosh": sympy.cosh,
"sinh": sympy.sinh,
"tanh": sympy.tanh,
"exp": sympy.exp,
"acos": sympy.acos,
"asin": sympy.asin,
"atan": sympy.atan,
"acosh": lambda x: sympy.acosh(abs(x) + 1),
"acosh_abs": lambda x: sympy.acosh(abs(x) + 1),
"asinh": sympy.asinh,
"atanh": lambda x: sympy.atanh(sympy.Mod(x + 1, 2) - 1),
"atanh_clip": lambda x: sympy.atanh(sympy.Mod(x + 1, 2) - 1),
"abs": abs,
"mod": sympy.Mod,
"erf": sympy.erf,
"erfc": sympy.erfc,
"log_abs": lambda x: sympy.log(abs(x)),
"log10_abs": lambda x: sympy.log(abs(x), 10),
"log2_abs": lambda x: sympy.log(abs(x), 2),
"log1p_abs": lambda x: sympy.log(abs(x) + 1),
"floor": sympy.floor,
"ceil": sympy.ceiling,
"sign": sympy.sign,
"gamma": sympy.gamma,
}
def pysr(X, y, weights=None, **kwargs):
warnings.warn(
"Calling `pysr` is deprecated. Please use `model = PySRRegressor(**params); model.fit(X, y)` going forward.",
DeprecationWarning,
)
model = PySRRegressor(**kwargs)
model.fit(X, y, weights=weights)
return model.equations
def _handle_constraints(binary_operators, unary_operators, constraints):
for op in unary_operators:
if op not in constraints:
constraints[op] = -1
for op in binary_operators:
if op not in constraints:
constraints[op] = (-1, -1)
if op in ["plus", "sub"]:
if constraints[op][0] != constraints[op][1]:
raise NotImplementedError(
"You need equal constraints on both sides for - and *, due to simplification strategies."
)
elif op == "mult":
# Make sure the complex expression is in the left side.
if constraints[op][0] == -1:
continue
if constraints[op][1] == -1 or constraints[op][0] < constraints[op][1]:
constraints[op][0], constraints[op][1] = (
constraints[op][1],
constraints[op][0],
)
def _create_inline_operators(binary_operators, unary_operators):
global Main
for op_list in [binary_operators, unary_operators]:
for i, op in enumerate(op_list):
is_user_defined_operator = "(" in op
if is_user_defined_operator:
Main.eval(op)
# Cut off from the first non-alphanumeric char:
first_non_char = [
j
for j, char in enumerate(op)
if not (char.isalpha() or char.isdigit())
][0]
function_name = op[:first_non_char]
op_list[i] = function_name
def _handle_feature_selection(X, select_k_features, y, variable_names):
if select_k_features is not None:
selection = run_feature_selection(X, y, select_k_features)
print(f"Using features {[variable_names[i] for i in selection]}")
X = X[:, selection]
else:
selection = None
return X, selection
def _check_assertions(
X,
binary_operators,
unary_operators,
use_custom_variable_names,
variable_names,
weights,
y,
):
# Check for potential errors before they happen
assert len(unary_operators) + len(binary_operators) > 0
assert len(X.shape) == 2
assert len(y.shape) in [1, 2]
assert X.shape[0] == y.shape[0]
if weights is not None:
assert weights.shape == y.shape
assert X.shape[0] == weights.shape[0]
if use_custom_variable_names:
assert len(variable_names) == X.shape[1]
def run_feature_selection(X, y, select_k_features):
"""Use a gradient boosting tree regressor as a proxy for finding
the k most important features in X, returning indices for those
features as output."""
from sklearn.ensemble import RandomForestRegressor
from sklearn.feature_selection import SelectFromModel
clf = RandomForestRegressor(n_estimators=100, max_depth=3, random_state=0)
clf.fit(X, y)
selector = SelectFromModel(
clf, threshold=-np.inf, max_features=select_k_features, prefit=True
)
return selector.get_support(indices=True)
def _escape_filename(filename):
"""Turns a file into a string representation with correctly escaped backslashes"""
str_repr = str(filename)
str_repr = str_repr.replace("\\", "\\\\")
return str_repr
def best(*args, **kwargs):
raise NotImplementedError(
"`best` has been deprecated. Please use the `PySRRegressor` interface. After fitting, you can return `.sympy()` to get the sympy representation of the best equation."
)
def best_row(*args, **kwargs):
raise NotImplementedError(
"`best_row` has been deprecated. Please use the `PySRRegressor` interface. After fitting, you can run `print(model)` to view the best equation."
)
def best_tex(*args, **kwargs):
raise NotImplementedError(
"`best_tex` has been deprecated. Please use the `PySRRegressor` interface. After fitting, you can return `.latex()` to get the sympy representation of the best equation."
)
def best_callable(*args, **kwargs):
raise NotImplementedError(
"`best_callable` has been deprecated. Please use the `PySRRegressor` interface. After fitting, you can use `.predict(X)` to use the best callable."
)
def _denoise(X, y, Xresampled=None):
"""Denoise the dataset using a Gaussian process"""
from sklearn.gaussian_process import GaussianProcessRegressor
from sklearn.gaussian_process.kernels import RBF, WhiteKernel, ConstantKernel
gp_kernel = RBF(np.ones(X.shape[1])) + WhiteKernel(1e-1) + ConstantKernel()
gpr = GaussianProcessRegressor(kernel=gp_kernel, n_restarts_optimizer=50)
gpr.fit(X, y)
if Xresampled is not None:
return Xresampled, gpr.predict(Xresampled)
return X, gpr.predict(X)
class CallableEquation:
"""Simple wrapper for numpy lambda functions built with sympy"""
def __init__(self, sympy_symbols, eqn, selection=None, variable_names=None):
self._sympy = eqn
self._sympy_symbols = sympy_symbols
self._selection = selection
self._variable_names = variable_names
self._lambda = lambdify(sympy_symbols, eqn)
def __repr__(self):
return f"PySRFunction(X=>{self._sympy})"
def __call__(self, X):
if isinstance(X, pd.DataFrame):
X = np.array(X[self._variable_names])
if self._selection is not None:
return self._lambda(*X[:, self._selection].T)
return self._lambda(*X.T)
def _get_julia_project(julia_project):
if julia_project is None:
# Create temp directory:
tmp_dir = tempfile.mkdtemp()
tmp_dir = Path(tmp_dir)
# Create Project.toml in temp dir:
_write_project_file(tmp_dir)
return tmp_dir
else:
return Path(julia_project)
def silence_julia_warning():
global is_julia_warning_silenced
is_julia_warning_silenced = True
def init_julia():
"""Initialize julia binary, turning off compiled modules if needed."""
global is_julia_warning_silenced
from julia.core import JuliaInfo, UnsupportedPythonError
info = JuliaInfo.load(julia="julia")
if not info.is_pycall_built():
raise ImportError(
"""
Required dependencies are not installed or built. Run the following code in the Python REPL:
>>> import pysr
>>> pysr.install()"""
)
Main = None
try:
from julia import Main as _Main
Main = _Main
except UnsupportedPythonError:
if not is_julia_warning_silenced:
warnings.warn(
"""
Your Python version is statically linked to libpython. For example, this could be the python included with conda, or maybe your system's built-in python.
This will still work, but the precompilation cache for Julia will be turned off, which may result in slower startup times on the initial pysr() call.
To install a Python version that is dynamically linked to libpython, pyenv is recommended (https://github.com/pyenv/pyenv).
To silence this warning, you can run pysr.silence_julia_warning() after importing pysr."""
)
from julia.core import Julia
jl = Julia(compiled_modules=False)
from julia import Main as _Main
Main = _Main
return Main
def _write_project_file(tmp_dir):
"""This writes a Julia Project.toml to a temporary directory
The reason we need this is because sometimes Python will compile a project to binary,
and then Julia can't read the Project.toml file. It is more reliable to have Python
simply create the Project.toml from scratch.
"""
project_toml = """
[deps]
SymbolicRegression = "8254be44-1295-4e6a-a16d-46603ac705cb"
[compat]
SymbolicRegression = "0.7.0"
julia = "1.5"
"""
project_toml_path = tmp_dir / "Project.toml"
project_toml_path.write_text(project_toml)
class PySRRegressor(BaseEstimator, RegressorMixin):
def __init__(
self,
model_selection="best",
weights=None,
binary_operators=None,
unary_operators=None,
procs=cpu_count(),
loss="L2DistLoss()",
populations=20,
niterations=100,
ncyclesperiteration=300,
alpha=0.1,
annealing=False,
fractionReplaced=0.10,
fractionReplacedHof=0.10,
npop=1000,
parsimony=1e-4,
migration=True,
hofMigration=True,
shouldOptimizeConstants=True,
topn=10,
weightAddNode=1,
weightInsertNode=3,
weightDeleteNode=3,
weightDoNothing=1,
weightMutateConstant=10,
weightMutateOperator=1,
weightRandomize=1,
weightSimplify=0.002,
perturbationFactor=1.0,
extra_sympy_mappings=None,
extra_torch_mappings=None,
extra_jax_mappings=None,
equation_file=None,
verbosity=1e9,
progress=None,
maxsize=20,
fast_cycle=False,
maxdepth=None,
variable_names=None,
batching=False,
batchSize=50,
select_k_features=None,
warmupMaxsizeBy=0.0,
constraints=None,
useFrequency=True,
tempdir=None,
delete_tempfiles=True,
julia_project=None,
update=True,
temp_equation_file=False,
output_jax_format=False,
output_torch_format=False,
optimizer_algorithm="BFGS",
optimizer_nrestarts=3,
optimize_probability=1.0,
optimizer_iterations=10,
tournament_selection_n=10,
tournament_selection_p=1.0,
denoise=False,
Xresampled=None,
precision=32,
multithreading=None,
**kwargs,
):
"""Initialize settings for an equation search in PySR.
Note: most default parameters have been tuned over several example
equations, but you should adjust `niterations`,
`binary_operators`, `unary_operators` to your requirements.
You can view more detailed explanations of the options on the
[options page](https://pysr.readthedocs.io/en/latest/docs/options/) of the documentation.
:param model_selection: How to select a model. Can be 'accuracy' or 'best'. The default, 'best', will optimize a combination of complexity and accuracy.
:type model_selection: str
:param binary_operators: List of strings giving the binary operators in Julia's Base. Default is ["+", "-", "*", "/",].
:type binary_operators: list
:param unary_operators: Same but for operators taking a single scalar. Default is [].
:type unary_operators: list
:param procs: Number of processes (=number of populations running).
:type procs: int
:param loss: String of Julia code specifying the loss function. Can either be a loss from LossFunctions.jl, or your own loss written as a function. Examples of custom written losses include: `myloss(x, y) = abs(x-y)` for non-weighted, or `myloss(x, y, w) = w*abs(x-y)` for weighted. Among the included losses, these are as follows. Regression: `LPDistLoss{P}()`, `L1DistLoss()`, `L2DistLoss()` (mean square), `LogitDistLoss()`, `HuberLoss(d)`, `L1EpsilonInsLoss(ϵ)`, `L2EpsilonInsLoss(ϵ)`, `PeriodicLoss(c)`, `QuantileLoss(τ)`. Classification: `ZeroOneLoss()`, `PerceptronLoss()`, `L1HingeLoss()`, `SmoothedL1HingeLoss(γ)`, `ModifiedHuberLoss()`, `L2MarginLoss()`, `ExpLoss()`, `SigmoidLoss()`, `DWDMarginLoss(q)`.
:type loss: str
:param populations: Number of populations running.
:type populations: int
:param niterations: Number of iterations of the algorithm to run. The best equations are printed, and migrate between populations, at the end of each.
:type niterations: int
:param ncyclesperiteration: Number of total mutations to run, per 10 samples of the population, per iteration.
:type ncyclesperiteration: int
:param alpha: Initial temperature.
:type alpha: float
:param annealing: Whether to use annealing. You should (and it is default).
:type annealing: bool
:param fractionReplaced: How much of population to replace with migrating equations from other populations.
:type fractionReplaced: float
:param fractionReplacedHof: How much of population to replace with migrating equations from hall of fame.
:type fractionReplacedHof: float
:param npop: Number of individuals in each population
:type npop: int
:param parsimony: Multiplicative factor for how much to punish complexity.
:type parsimony: float
:param migration: Whether to migrate.
:type migration: bool
:param hofMigration: Whether to have the hall of fame migrate.
:type hofMigration: bool
:param shouldOptimizeConstants: Whether to numerically optimize constants (Nelder-Mead/Newton) at the end of each iteration.
:type shouldOptimizeConstants: bool
:param topn: How many top individuals migrate from each population.
:type topn: int
:param perturbationFactor: Constants are perturbed by a max factor of (perturbationFactor*T + 1). Either multiplied by this or divided by this.
:type perturbationFactor: float
:param weightAddNode: Relative likelihood for mutation to add a node
:type weightAddNode: float
:param weightInsertNode: Relative likelihood for mutation to insert a node
:type weightInsertNode: float
:param weightDeleteNode: Relative likelihood for mutation to delete a node
:type weightDeleteNode: float
:param weightDoNothing: Relative likelihood for mutation to leave the individual
:type weightDoNothing: float
:param weightMutateConstant: Relative likelihood for mutation to change the constant slightly in a random direction.
:type weightMutateConstant: float
:param weightMutateOperator: Relative likelihood for mutation to swap an operator.
:type weightMutateOperator: float
:param weightRandomize: Relative likelihood for mutation to completely delete and then randomly generate the equation
:type weightRandomize: float
:param weightSimplify: Relative likelihood for mutation to simplify constant parts by evaluation
:type weightSimplify: float
:param equation_file: Where to save the files (.csv separated by |)
:type equation_file: str
:param verbosity: What verbosity level to use. 0 means minimal print statements.
:type verbosity: int
:param progress: Whether to use a progress bar instead of printing to stdout.
:type progress: bool
:param maxsize: Max size of an equation.
:type maxsize: int
:param maxdepth: Max depth of an equation. You can use both maxsize and maxdepth. maxdepth is by default set to = maxsize, which means that it is redundant.
:type maxdepth: int
:param fast_cycle: (experimental) - batch over population subsamples. This is a slightly different algorithm than regularized evolution, but does cycles 15% faster. May be algorithmically less efficient.
:type fast_cycle: bool
:param variable_names: a list of names for the variables, other than "x0", "x1", etc.
:type variable_names: list
:param batching: whether to compare population members on small batches during evolution. Still uses full dataset for comparing against hall of fame.
:type batching: bool
:param batchSize: the amount of data to use if doing batching.
:type batchSize: int
:param select_k_features: whether to run feature selection in Python using random forests, before passing to the symbolic regression code. None means no feature selection; an int means select that many features.
:type select_k_features: None/int
:param warmupMaxsizeBy: whether to slowly increase max size from a small number up to the maxsize (if greater than 0). If greater than 0, says the fraction of training time at which the current maxsize will reach the user-passed maxsize.
:type warmupMaxsizeBy: float
:param constraints: dictionary of int (unary) or 2-tuples (binary), this enforces maxsize constraints on the individual arguments of operators. E.g., `'pow': (-1, 1)` says that power laws can have any complexity left argument, but only 1 complexity exponent. Use this to force more interpretable solutions.
:type constraints: dict
:param useFrequency: whether to measure the frequency of complexities, and use that instead of parsimony to explore equation space. Will naturally find equations of all complexities.
:type useFrequency: bool
:param tempdir: directory for the temporary files
:type tempdir: str/None
:param delete_tempfiles: whether to delete the temporary files after finishing
:type delete_tempfiles: bool
:param julia_project: a Julia environment location containing a Project.toml (and potentially the source code for SymbolicRegression.jl). Default gives the Python package directory, where a Project.toml file should be present from the install.
:type julia_project: str/None
:param update: Whether to automatically update Julia packages.
:type update: bool
:param temp_equation_file: Whether to put the hall of fame file in the temp directory. Deletion is then controlled with the delete_tempfiles argument.
:type temp_equation_file: bool
:param output_jax_format: Whether to create a 'jax_format' column in the output, containing jax-callable functions and the default parameters in a jax array.
:type output_jax_format: bool
:param output_torch_format: Whether to create a 'torch_format' column in the output, containing a torch module with trainable parameters.
:type output_torch_format: bool
:param tournament_selection_n: Number of expressions to consider in each tournament.
:type tournament_selection_n: int
:param tournament_selection_p: Probability of selecting the best expression in each tournament. The probability will decay as p*(1-p)^n for other expressions, sorted by loss.
:type tournament_selection_p: float
:param denoise: Whether to use a Gaussian Process to denoise the data before inputting to PySR. Can help PySR fit noisy data.
:type denoise: bool
:param precision: What precision to use for the data. By default this is 32 (float32), but you can select 64 or 16 as well.
:type precision: int
:param multithreading: Use multithreading instead of distributed backend. Default is yes. Using procs=0 will turn off both.
:type multithreading: bool
:param **kwargs: Other options passed to SymbolicRegression.Options, for example, if you modify SymbolicRegression.jl to include additional arguments.
:type **kwargs: dict
:returns: Results dataframe, giving complexity, MSE, and equations (as strings), as well as functional forms. If list, each element corresponds to a dataframe of equations for each output.
:type: pd.DataFrame/list
"""
super().__init__()
self.model_selection = model_selection
if binary_operators is None:
binary_operators = "+ * - /".split(" ")
if unary_operators is None:
unary_operators = []
if extra_sympy_mappings is None:
extra_sympy_mappings = {}
if variable_names is None:
variable_names = []
if constraints is None:
constraints = {}
if multithreading is None:
# Default is multithreading=True, unless explicitly set,
# or procs is set to 0 (serial mode).
multithreading = procs != 0
buffer_available = "buffer" in sys.stdout.__dir__()
if progress is not None:
if progress and not buffer_available:
warnings.warn(
"Note: it looks like you are running in Jupyter. The progress bar will be turned off."
)
progress = False
else:
progress = buffer_available
assert optimizer_algorithm in ["NelderMead", "BFGS"]
assert tournament_selection_n < npop
if extra_jax_mappings is not None:
for value in extra_jax_mappings.values():
if not isinstance(value, str):
raise NotImplementedError(
"extra_jax_mappings must have keys that are strings! e.g., {sympy.sqrt: 'jnp.sqrt'}."
)
if extra_torch_mappings is not None:
for value in extra_jax_mappings.values():
if not callable(value):
raise NotImplementedError(
"extra_torch_mappings must be callable functions! e.g., {sympy.sqrt: torch.sqrt}."
)
if maxsize > 40:
warnings.warn(
"Note: Using a large maxsize for the equation search will be exponentially slower and use significant memory. You should consider turning `useFrequency` to False, and perhaps use `warmupMaxsizeBy`."
)
elif maxsize < 7:
raise NotImplementedError("PySR requires a maxsize of at least 7")
if maxdepth is None:
maxdepth = maxsize
if isinstance(binary_operators, str):
binary_operators = [binary_operators]
if isinstance(unary_operators, str):
unary_operators = [unary_operators]
self.params = {
**dict(
weights=weights,
binary_operators=binary_operators,
unary_operators=unary_operators,
procs=procs,
loss=loss,
populations=populations,
niterations=niterations,
ncyclesperiteration=ncyclesperiteration,
alpha=alpha,
annealing=annealing,
fractionReplaced=fractionReplaced,
fractionReplacedHof=fractionReplacedHof,
npop=npop,
parsimony=float(parsimony),
migration=migration,
hofMigration=hofMigration,
shouldOptimizeConstants=shouldOptimizeConstants,
topn=topn,
weightAddNode=weightAddNode,
weightInsertNode=weightInsertNode,
weightDeleteNode=weightDeleteNode,
weightDoNothing=weightDoNothing,
weightMutateConstant=weightMutateConstant,
weightMutateOperator=weightMutateOperator,
weightRandomize=weightRandomize,
weightSimplify=weightSimplify,
perturbationFactor=perturbationFactor,
verbosity=verbosity,
progress=progress,
maxsize=maxsize,
fast_cycle=fast_cycle,
maxdepth=maxdepth,
batching=batching,
batchSize=batchSize,
select_k_features=select_k_features,
warmupMaxsizeBy=warmupMaxsizeBy,
constraints=constraints,
useFrequency=useFrequency,
tempdir=tempdir,
delete_tempfiles=delete_tempfiles,
update=update,
temp_equation_file=temp_equation_file,
optimizer_algorithm=optimizer_algorithm,
optimizer_nrestarts=optimizer_nrestarts,
optimize_probability=optimize_probability,
optimizer_iterations=optimizer_iterations,
tournament_selection_n=tournament_selection_n,
tournament_selection_p=tournament_selection_p,
denoise=denoise,
Xresampled=Xresampled,
precision=precision,
multithreading=multithreading,
),
**kwargs,
}
# Stored equations:
self.equations = None
self.multioutput = None
self.raw_julia_output = None
self.equation_file = equation_file
self.n_features = None
self.extra_sympy_mappings = extra_sympy_mappings
self.extra_torch_mappings = extra_torch_mappings
self.extra_jax_mappings = extra_jax_mappings
self.output_jax_format = output_jax_format
self.output_torch_format = output_torch_format
self.nout = 1
self.selection = None
self.variable_names = variable_names
self.julia_project = julia_project
self.surface_parameters = [
"model_selection",
"multioutput",
"raw_julia_output",
"equation_file",
"n_features",
"extra_sympy_mappings",
"extra_torch_mappings",
"extra_jax_mappings",
"output_jax_format",
"output_torch_format",
"nout",
"selection",
"variable_names",
"julia_project",
]
def __repr__(self):
if self.equations is None:
return "PySRRegressor.equations = None"
output = "PySRRegressor.equations = [\n"
equations = self.equations
if not isinstance(equations, list):
all_equations = [equations]
else:
all_equations = equations
for i, equations in enumerate(all_equations):
selected = ["" for _ in range(len(equations))]
if self.model_selection == "accuracy":
chosen_row = -1
elif self.model_selection == "best":
chosen_row = equations["score"].idxmax()
else:
raise NotImplementedError
selected[chosen_row] = ">>>>"
repr_equations = pd.DataFrame(
dict(
pick=selected,
score=equations["score"],
equation=equations["equation"],
loss=equations["loss"],
complexity=equations["complexity"],
)
)
if len(all_equations) > 1:
output += "[\n"
for line in repr_equations.__repr__().split("\n"):
output += "\t" + line + "\n"
if len(all_equations) > 1:
output += "]"
if i < len(all_equations) - 1:
output += ", "
output += "]"
return output
def set_params(self, **params):
"""Set parameters for pysr.pysr call or model_selection strategy."""
for key, value in params.items():
if key in self.surface_parameters:
self.__setattr__(key, value)
else:
self.params[key] = value
self.refresh()
return self
def get_params(self, deep=True):
del deep
return {
**self.params,
**{p: self.__getattribute__(key) for key in self.surface_parameters},
}
def get_best(self):
if self.equations is None:
raise ValueError("No equations have been generated yet.")
if self.model_selection == "accuracy":
if isinstance(self.equations, list):
return [eq.iloc[-1] for eq in self.equations]
return self.equations.iloc[-1]
elif self.model_selection == "best":
if isinstance(self.equations, list):
return [eq.iloc[eq["score"].idxmax()] for eq in self.equations]
return self.equations.iloc[self.equations["score"].idxmax()]
else:
raise NotImplementedError(
f"{self.model_selection} is not a valid model selection strategy."
)
def fit(self, X, y, weights=None, variable_names=None):
"""Search for equations to fit the dataset.
:param X: 2D array. Rows are examples, columns are features. If pandas DataFrame, the columns are used for variable names (so make sure they don't contain spaces).
:type X: np.ndarray/pandas.DataFrame
:param y: 1D array (rows are examples) or 2D array (rows are examples, columns are outputs). Putting in a 2D array will trigger a search for equations for each feature of y.
:type y: np.ndarray
:param weights: Optional. Same shape as y. Each element is how to weight the mean-square-error loss for that particular element of y.
:type weights: np.ndarray
:param variable_names: a list of names for the variables, other than "x0", "x1", etc.
:type variable_names: list
"""
if variable_names is None:
variable_names = self.variable_names
self._run(
X=X,
y=y,
weights=weights,
variable_names=variable_names,
)
return self
def refresh(self):
# Updates self.equations with any new options passed,
# such as extra_sympy_mappings.
self.equations = self.get_hof()
def predict(self, X):
self.refresh()
best = self.get_best()
if self.multioutput:
return np.stack([eq["lambda_format"](X) for eq in best], axis=1)
return best["lambda_format"](X)
def sympy(self):
self.refresh()
best = self.get_best()
if self.multioutput:
return [eq["sympy_format"] for eq in best]
return best["sympy_format"]
def latex(self):
self.refresh()
sympy_representation = self.sympy()
if self.multioutput:
return [sympy.latex(s) for s in sympy_representation]
return sympy.latex(sympy_representation)
def jax(self):
self.set_params(output_jax_format=True)
self.refresh()
best = self.get_best()
if self.multioutput:
return [eq["jax_format"] for eq in best]
return best["jax_format"]
def pytorch(self):
self.set_params(output_torch_format=True)
self.refresh()
best = self.get_best()
if self.multioutput:
return [eq["torch_format"] for eq in best]
return best["torch_format"]
def _run(self, X, y, weights, variable_names):
global already_ran
global Main
for key in self.surface_parameters:
if key in self.params:
raise ValueError(
f"{key} is a surface parameter, and cannot be in self.params"
)
multithreading = self.params["multithreading"]
procs = self.params["procs"]
binary_operators = self.params["binary_operators"]
unary_operators = self.params["unary_operators"]
batching = self.params["batching"]
maxsize = self.params["maxsize"]
select_k_features = self.params["select_k_features"]
Xresampled = self.params["Xresampled"]
denoise = self.params["denoise"]
constraints = self.params["constraints"]
update = self.params["update"]
loss = self.params["loss"]
weightMutateConstant = self.params["weightMutateConstant"]
weightMutateOperator = self.params["weightMutateOperator"]
weightAddNode = self.params["weightAddNode"]
weightInsertNode = self.params["weightInsertNode"]
weightDeleteNode = self.params["weightDeleteNode"]
weightSimplify = self.params["weightSimplify"]
weightRandomize = self.params["weightRandomize"]
weightDoNothing = self.params["weightDoNothing"]
if Main is None:
if multithreading:
os.environ["JULIA_NUM_THREADS"] = str(procs)
Main = init_julia()
if isinstance(X, pd.DataFrame):
if variable_names is not None:
warnings.warn("Resetting variable_names from X.columns")
variable_names = list(X.columns)
X = np.array(X)
if len(X.shape) == 1:
X = X[:, None]
assert not isinstance(y, pd.DataFrame)
if len(variable_names) == 0:
variable_names = [f"x{i}" for i in range(X.shape[1])]
use_custom_variable_names = len(variable_names) != 0
# TODO: this is always true.
_check_assertions(
X,
binary_operators,
unary_operators,
use_custom_variable_names,
variable_names,
weights,
y,
)
self.n_features = X.shape[1]
if len(X) > 10000 and not batching:
warnings.warn(
"Note: you are running with more than 10,000 datapoints. You should consider turning on batching (https://pysr.readthedocs.io/en/latest/docs/options/#batching). You should also reconsider if you need that many datapoints. Unless you have a large amount of noise (in which case you should smooth your dataset first), generally < 10,000 datapoints is enough to find a functional form with symbolic regression. More datapoints will lower the search speed."
)
X, selection = _handle_feature_selection(
X, select_k_features, y, variable_names
)
if len(y.shape) == 1 or (len(y.shape) == 2 and y.shape[1] == 1):
self.multioutput = False
self.nout = 1
y = y.reshape(-1)
elif len(y.shape) == 2:
self.multioutput = True
self.nout = y.shape[1]
else:
raise NotImplementedError("y shape not supported!")
if denoise:
if weights is not None:
raise NotImplementedError(
"No weights for denoising - the weights are learned."
)
if Xresampled is not None:
# Select among only the selected features:
if isinstance(Xresampled, pd.DataFrame):
# Handle Xresampled is pandas dataframe
if selection is not None:
Xresampled = Xresampled[[variable_names[i] for i in selection]]
else:
Xresampled = Xresampled[variable_names]
Xresampled = np.array(Xresampled)
else:
if selection is not None:
Xresampled = Xresampled[:, selection]
if self.multioutput:
y = np.stack(
[
_denoise(X, y[:, i], Xresampled=Xresampled)[1]
for i in range(self.nout)
],
axis=1,
)
if Xresampled is not None:
X = Xresampled
else:
X, y = _denoise(X, y, Xresampled=Xresampled)
self.julia_project = _get_julia_project(self.julia_project)
tmpdir = Path(tempfile.mkdtemp(dir=self.params["tempdir"]))
if self.params["temp_equation_file"]:
self.equation_file = tmpdir / "hall_of_fame.csv"
elif self.equation_file is None:
date_time = datetime.now().strftime("%Y-%m-%d_%H%M%S.%f")[:-3]
self.equation_file = "hall_of_fame_" + date_time + ".csv"
_create_inline_operators(
binary_operators=binary_operators, unary_operators=unary_operators
)
_handle_constraints(
binary_operators=binary_operators,
unary_operators=unary_operators,
constraints=constraints,
)
una_constraints = [constraints[op] for op in unary_operators]
bin_constraints = [constraints[op] for op in binary_operators]
try:
# TODO: is this needed since Julia now prints directly to stdout?
term_width = shutil.get_terminal_size().columns
except:
_, term_width = subprocess.check_output(["stty", "size"]).split()
if not already_ran:
from julia import Pkg
Pkg.activate(f"{_escape_filename(self.julia_project)}")
try:
if update:
Pkg.resolve()
Pkg.instantiate()
else:
Pkg.instantiate()
except RuntimeError as e:
raise ImportError(
f"""
Required dependencies are not installed or built. Run the following code in the Python REPL:
>>> import pysr
>>> pysr.install()
Tried to activate project {self.julia_project} but failed."""
) from e
Main.eval("using SymbolicRegression")
Main.plus = Main.eval("(+)")
Main.sub = Main.eval("(-)")
Main.mult = Main.eval("(*)")
Main.pow = Main.eval("(^)")
Main.div = Main.eval("(/)")
Main.custom_loss = Main.eval(loss)
mutationWeights = [
float(weightMutateConstant),
float(weightMutateOperator),
float(weightAddNode),
float(weightInsertNode),
float(weightDeleteNode),
float(weightSimplify),
float(weightRandomize),
float(weightDoNothing),
]
options = Main.Options(
binary_operators=Main.eval(str(tuple(binary_operators)).replace("'", "")),
unary_operators=Main.eval(str(tuple(unary_operators)).replace("'", "")),
bin_constraints=bin_constraints,
una_constraints=una_constraints,
loss=Main.custom_loss,
maxsize=int(maxsize),
hofFile=_escape_filename(self.equation_file),
npopulations=int(self.params["populations"]),
batching=batching,
batchSize=int(
min([self.params["batchSize"], len(X)]) if batching else len(X)
),
mutationWeights=mutationWeights,
terminal_width=int(term_width),
probPickFirst=self.params["tournament_selection_p"],
ns=self.params["tournament_selection_n"],
# These have the same name:
parsimony=self.params["parsimony"],
alpha=self.params["alpha"],
maxdepth=self.params["maxdepth"],
fast_cycle=self.params["fast_cycle"],
migration=self.params["migration"],
hofMigration=self.params["hofMigration"],
fractionReplacedHof=self.params["fractionReplacedHof"],
shouldOptimizeConstants=self.params["shouldOptimizeConstants"],
warmupMaxsizeBy=self.params["warmupMaxsizeBy"],
useFrequency=self.params["useFrequency"],
npop=self.params["npop"],
ncyclesperiteration=self.params["ncyclesperiteration"],
fractionReplaced=self.params["fractionReplaced"],
topn=self.params["topn"],
verbosity=self.params["verbosity"],
optimizer_algorithm=self.params["optimizer_algorithm"],
optimizer_nrestarts=self.params["optimizer_nrestarts"],
optimize_probability=self.params["optimize_probability"],
optimizer_iterations=self.params["optimizer_iterations"],
perturbationFactor=self.params["perturbationFactor"],
annealing=self.params["annealing"],
)
np_dtype = {16: np.float16, 32: np.float32, 64: np.float64}[
self.params["precision"]
]
Main.X = np.array(X, dtype=np_dtype).T
if len(y.shape) == 1:
Main.y = np.array(y, dtype=np_dtype)
else:
Main.y = np.array(y, dtype=np_dtype).T
if weights is not None:
if len(weights.shape) == 1:
Main.weights = np.array(weights, dtype=np_dtype)
else:
Main.weights = np.array(weights, dtype=np_dtype).T
else:
Main.weights = None
cprocs = 0 if multithreading else procs
self.raw_julia_output = Main.EquationSearch(
Main.X,
Main.y,
weights=Main.weights,
niterations=int(self.params["niterations"]),
varMap=(
variable_names
if selection is None
else [variable_names[i] for i in selection]
),
options=options,
numprocs=int(cprocs),
multithreading=bool(multithreading),
)
self.variable_names = variable_names
self.selection = selection
# Not in params:
# selection, variable_names, multioutput
self.equations = self.get_hof()
if self.params["delete_tempfiles"]:
shutil.rmtree(tmpdir)
already_ran = True
def get_hof(self):
"""Get the equations from a hall of fame file. If no arguments
entered, the ones used previously from a call to PySR will be used."""
try:
if self.multioutput:
all_outputs = []
for i in range(1, self.nout + 1):
df = pd.read_csv(
str(self.equation_file) + f".out{i}" + ".bkup",
sep="|",
)
# Rename Complexity column to complexity:
df.rename(
columns={
"Complexity": "complexity",
"MSE": "loss",
"Equation": "equation",
},
inplace=True,
)
all_outputs.append(df)
else:
all_outputs = [pd.read_csv(str(self.equation_file) + ".bkup", sep="|")]
all_outputs[-1].rename(
columns={
"Complexity": "complexity",
"MSE": "loss",
"Equation": "equation",
},
inplace=True,
)
except FileNotFoundError:
raise RuntimeError(
"Couldn't find equation file! The equation search likely exited before a single iteration completed."
)
ret_outputs = []
for output in all_outputs:
scores = []
lastMSE = None
lastComplexity = 0
sympy_format = []
lambda_format = []
if self.output_jax_format:
jax_format = []
if self.output_torch_format:
torch_format = []
use_custom_variable_names = len(self.variable_names) != 0
local_sympy_mappings = {
**self.extra_sympy_mappings,
**sympy_mappings,
}
if use_custom_variable_names:
sympy_symbols = [
sympy.Symbol(self.variable_names[i]) for i in range(self.n_features)
]
else:
sympy_symbols = [
sympy.Symbol("x%d" % i) for i in range(self.n_features)
]
for _, eqn_row in output.iterrows():
eqn = sympify(eqn_row["equation"], locals=local_sympy_mappings)
sympy_format.append(eqn)
# Numpy:
lambda_format.append(
CallableEquation(
sympy_symbols, eqn, self.selection, self.variable_names
)
)
# JAX:
if self.output_jax_format:
from .export_jax import sympy2jax
func, params = sympy2jax(
eqn,
sympy_symbols,
selection=self.selection,
extra_jax_mappings=self.extra_jax_mappings,
)
jax_format.append({"callable": func, "parameters": params})
# Torch:
if self.output_torch_format:
from .export_torch import sympy2torch
module = sympy2torch(
eqn,
sympy_symbols,
selection=self.selection,
extra_torch_mappings=self.extra_torch_mappings,
)
torch_format.append(module)
curMSE = eqn_row["loss"]
curComplexity = eqn_row["complexity"]
if lastMSE is None:
cur_score = 0.0
else:
if curMSE > 0.0:
cur_score = -np.log(curMSE / lastMSE) / (
curComplexity - lastComplexity
)
else:
cur_score = np.inf
scores.append(cur_score)
lastMSE = curMSE
lastComplexity = curComplexity
output["score"] = np.array(scores)
output["sympy_format"] = sympy_format
output["lambda_format"] = lambda_format
output_cols = [
"complexity",
"loss",
"score",
"equation",
"sympy_format",
"lambda_format",
]
if self.output_jax_format:
output_cols += ["jax_format"]
output["jax_format"] = jax_format
if self.output_torch_format:
output_cols += ["torch_format"]
output["torch_format"] = torch_format
ret_outputs.append(output[output_cols])
if self.multioutput:
return ret_outputs
return ret_outputs[0]
def score(self, X, y):
del X
del y
raise NotImplementedError
|