File size: 13,684 Bytes
58cea02
 
 
 
 
 
d765ee8
58cea02
 
 
9c7e08b
58cea02
 
 
 
 
 
 
 
d04558f
58cea02
 
 
e560f1d
58cea02
 
 
1689df1
5db8a23
 
 
 
 
 
 
691ab8e
5db8a23
 
 
 
 
58cea02
1689df1
58cea02
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
356c7d4
 
3909ec7
356c7d4
 
 
 
e24862c
6d04e58
58cea02
 
 
 
6d04e58
2df0c40
 
76d511e
2c57866
e24862c
2df0c40
e24862c
 
 
 
 
 
 
 
 
2df0c40
6d04e58
 
e24862c
2c57866
d765ee8
 
 
 
 
 
 
 
 
 
2c57866
6d04e58
 
d765ee8
 
 
 
 
 
 
 
 
 
 
 
 
 
6d04e58
 
691ab8e
6d04e58
76d511e
 
 
 
 
 
6d04e58
76d511e
 
 
 
 
 
 
 
 
 
 
 
 
 
6d04e58
 
 
 
 
 
 
 
 
 
 
 
 
 
 
76d511e
 
 
 
 
 
f978d14
 
 
691ab8e
 
 
 
f978d14
5f9c332
 
 
 
 
f978d14
691ab8e
f978d14
5f9c332
3502a68
f978d14
 
 
 
 
da7253c
3502a68
f978d14
 
 
 
 
2df0c40
f978d14
 
 
e24862c
f978d14
 
 
 
e24862c
f978d14
 
 
 
 
 
 
 
 
 
e24862c
f978d14
 
 
e24862c
 
f978d14
 
 
 
 
 
 
 
e24862c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
import streamlit as st
st.set_page_config(layout="wide")
import numpy as np
import pandas as pd
import time
from fuzzywuzzy import process
from collections import Counter

## import global functions
from global_func.clean_player_name import clean_player_name
from global_func.load_contest_file import load_contest_file
from global_func.load_file import load_file
from global_func.load_ss_file import load_ss_file
from global_func.find_name_mismatches import find_name_mismatches
from global_func.predict_dupes import predict_dupes
from global_func.highlight_rows import highlight_changes, highlight_changes_winners, highlight_changes_losers
from global_func.load_csv import load_csv
from global_func.find_csv_mismatches import find_csv_mismatches

tab1, tab2 = st.tabs(["Data Load", "Contest Analysis"])
with tab1:
    if st.button('Clear data', key='reset1'):
        st.session_state.clear()
    sport_select = st.selectbox("Select Sport", ['MLB', 'NBA', 'NFL'])
    # Add file uploaders to your app
    col1, col2, col3 = st.columns(3)
    
    with col1:
        st.subheader("Contest File")
        st.info("Go ahead and upload a Contest file here. Only include player columns and an optional 'Stack' column if you are playing MLB.")
        Contest_file = st.file_uploader("Upload Contest File (CSV or Excel)", type=['csv', 'xlsx', 'xls'])
        if 'Contest' in st.session_state:
            del st.session_state['Contest']

        if Contest_file:
            st.session_state['Contest'], st.session_state['ownership_dict'], st.session_state['actual_dict'], st.session_state['entry_list'] = load_contest_file(Contest_file, sport_select)
            st.session_state['Contest'] = st.session_state['Contest'].dropna(how='all')
            st.session_state['Contest'] = st.session_state['Contest'].reset_index(drop=True)
            if st.session_state['Contest'] is not None:
                st.success('Contest file loaded successfully!')
                st.dataframe(st.session_state['Contest'].head(10))

    with col2:
        st.subheader("Projections File")
        st.info("upload a projections file that has 'player_names', 'salary', 'median', 'ownership', and 'captain ownership' (Needed for Showdown) columns. Note that the salary for showdown needs to be the FLEX salary, not the captain salary.")
        
        # Create two columns for the uploader and template button
        upload_col, template_col = st.columns([3, 1])
        
        with upload_col:
            projections_file = st.file_uploader("Upload Projections File (CSV or Excel)", type=['csv', 'xlsx', 'xls'])
            if 'projections_df' in st.session_state:
                del st.session_state['projections_df']
        
        with template_col:
            # Create empty DataFrame with required columns
            template_df = pd.DataFrame(columns=['player_names', 'position', 'team', 'salary', 'median', 'ownership', 'captain ownership'])
            # Add download button for template
            st.download_button(
                label="Template",
                data=template_df.to_csv(index=False),
                file_name="projections_template.csv",
                mime="text/csv"
            )
            
        if projections_file:
            export_projections, projections = load_file(projections_file)
            if projections is not None:
                st.success('Projections file loaded successfully!')
                st.dataframe(projections.head(10))

    if Contest_file and projections_file:
        if st.session_state['Contest'] is not None and projections is not None:
            st.subheader("Name Matching functions")
            # Initialize projections_df in session state if it doesn't exist
            if 'projections_df' not in st.session_state:
                st.session_state['projections_df'] = projections.copy()
                st.session_state['projections_df']['salary'] = (st.session_state['projections_df']['salary'].astype(str).str.replace(',', '').astype(float).astype(int))
                # Run name matching only once when first loading the files
                st.session_state['Contest'], st.session_state['projections_df'] = find_name_mismatches(st.session_state['Contest'], st.session_state['projections_df'])

with tab2:
    if st.button('Clear data', key='reset3'):
        st.session_state.clear()
    if 'Contest' in st.session_state and 'projections_df' in st.session_state:
        col1, col2 = st.columns([1, 8])
        excluded_cols = ['BaseName', 'EntryCount']
        player_columns = [col for col in st.session_state['Contest'].columns if col not in excluded_cols]
        
        # Create mapping dictionaries
        map_dict = {
            'pos_map': dict(zip(st.session_state['projections_df']['player_names'], st.session_state['projections_df']['position'])),
            'team_map': dict(zip(st.session_state['projections_df']['player_names'], st.session_state['projections_df']['team'])),
            'salary_map': dict(zip(st.session_state['projections_df']['player_names'], st.session_state['projections_df']['salary'])),
            'proj_map': dict(zip(st.session_state['projections_df']['player_names'], st.session_state['projections_df']['median'])),
            'own_map': dict(zip(st.session_state['projections_df']['player_names'], st.session_state['projections_df']['ownership'])),
            'own_percent_rank': dict(zip(st.session_state['projections_df']['player_names'], st.session_state['projections_df']['ownership'].rank(pct=True))),
            'cpt_salary_map': dict(zip(st.session_state['projections_df']['player_names'], st.session_state['projections_df']['salary'])),
            'cpt_proj_map': dict(zip(st.session_state['projections_df']['player_names'], st.session_state['projections_df']['median'] * 1.5)),
            'cpt_own_map': dict(zip(st.session_state['projections_df']['player_names'], st.session_state['projections_df']['captain ownership']))
        }
        # Create a copy of the dataframe for calculations
        working_df = st.session_state['Contest'].copy()

        with col1:
            with st.expander("Info and filters"):
                with st.form(key='filter_form'):
                    type_var = st.selectbox("Select Game Type", ['Classic', 'Showdown'])
                    entry_parse_var = st.selectbox("Do you want to view a specific player(s) or a group of players?", ['All', 'Specific'])
                    entry_names = st.multiselect("Select players", options=st.session_state['entry_list'], default=[])
                    submitted = st.form_submit_button("Submit")
                    if submitted:
                        # Apply entry name filter if specific entries are selected
                        if entry_parse_var == 'Specific' and entry_names:
                            working_df = working_df[working_df['BaseName'].isin(entry_names)]

        # Calculate metrics based on game type
        if type_var == 'Classic':
            working_df['stack'] = working_df.apply(
                lambda row: Counter(
                    map_dict['team_map'].get(player, '') for player in row
                    if map_dict['team_map'].get(player, '') != ''
                ).most_common(1)[0][0] if any(map_dict['team_map'].get(player, '') for player in row) else '',
                axis=1
            )
            working_df['stack_size'] = working_df.apply(
                lambda row: Counter(
                    map_dict['team_map'].get(player, '') for player in row
                    if map_dict['team_map'].get(player, '') != ''
                ).most_common(1)[0][1] if any(map_dict['team_map'].get(player, '') for player in row) else '',
                axis=1
            )
            working_df['salary'] = working_df.apply(lambda row: sum(map_dict['salary_map'].get(player, 0) for player in row), axis=1)
            working_df['median'] = working_df.apply(lambda row: sum(map_dict['proj_map'].get(player, 0) for player in row), axis=1)
            working_df['actual'] = working_df.apply(lambda row: sum(st.session_state['actual_dict'].get(player, 0) for player in row), axis=1)
            working_df['Own'] = working_df.apply(lambda row: sum(map_dict['own_map'].get(player, 0) for player in row), axis=1)
            working_df['sorted'] = working_df[player_columns].apply(
                lambda row: ','.join(sorted(row.values)),
                axis=1
            )
            working_df['dupes'] = working_df.groupby('sorted').transform('size')
            working_df = working_df.drop('sorted', axis=1)
        elif type_var == 'Showdown':
            working_df['stack'] = working_df.apply(
                lambda row: Counter(
                    map_dict['team_map'].get(player, '') for player in row
                    if map_dict['team_map'].get(player, '') != ''
                ).most_common(1)[0][0] if any(map_dict['team_map'].get(player, '') for player in row) else '',
                axis=1
            )
            working_df['stack_size'] = working_df.apply(
                lambda row: Counter(
                    map_dict['team_map'].get(player, '') for player in row
                    if map_dict['team_map'].get(player, '') != ''
                ).most_common(1)[0][1] if any(map_dict['team_map'].get(player, '') for player in row) else '',
                axis=1
            )
            working_df['salary'] = working_df.apply(
                lambda row: map_dict['cpt_salary_map'].get(row.iloc[0], 0) + 
                            sum(map_dict['salary_map'].get(player, 0) for player in row.iloc[1:]),
                axis=1
            )
            working_df['median'] = working_df.apply(
                lambda row: map_dict['cpt_proj_map'].get(row.iloc[0], 0) + 
                            sum(map_dict['proj_map'].get(player, 0) for player in row.iloc[1:]),
                axis=1
            )
            working_df['Own'] = working_df.apply(
                lambda row: map_dict['cpt_own_map'].get(row.iloc[0], 0) + 
                            sum(map_dict['own_map'].get(player, 0) for player in row.iloc[1:]),
                axis=1
            )
            working_df['sorted'] = working_df[player_columns].apply(
                lambda row: row[0] + '|' + ','.join(sorted(row[1:].values)),
                axis=1
            )
            working_df['dupes'] = working_df.groupby('sorted').transform('size')
            working_df = working_df.drop('sorted', axis=1)
        

        contest_players = set()
        players_1per = set()
        players_5per = set()
        players_10per = set()
        players_20per = set()
        for col in player_columns:
            contest_players = working_df.copy()
            players_1per = working_df.nlargest(n=int(len(working_df) * 0.01), columns='actual')
            players_5per = working_df.nlargest(n=int(len(working_df) * 0.05), columns='actual')
            players_10per = working_df.nlargest(n=int(len(working_df) * 0.10), columns='actual')
            players_20per = working_df.nlargest(n=int(len(working_df) * 0.20), columns='actual')
        with st.container():
            tab1, tab2 = st.tabs(['Player Used Info', 'Stack Used Info'])
            with tab1:
                player_counts = pd.Series(list(contest_players[player_columns].values.flatten())).value_counts()
                st.write(player_counts)
                player_frame = player_counts.to_frame().reset_index().rename(columns={'index': 'Player', 0: 'Count'})
                player_frame['Percent'] = player_frame['Count'] / len(working_df)
                player_frame = player_frame[['Player', 'Count', 'Percent']]
                st.dataframe(player_frame)
            with tab2:
                stack_counts = pd.Series(list(working_df['stack'].unique())).value_counts()
                st.write(stack_counts)
                stack_frame = stack_counts.to_frame().reset_index().rename(columns={'index': 'Stack', 0: 'Count'})
                stack_frame['Percent'] = stack_frame['Count'] / len(working_df)
                stack_frame = stack_frame[['Stack', 'Count', 'Percent']]
                st.dataframe(stack_frame)


        # Initialize pagination in session state if not exists
        if 'current_page' not in st.session_state:
            st.session_state.current_page = 0

        # Calculate total pages
        rows_per_page = 500
        total_rows = len(working_df)
        total_pages = (total_rows + rows_per_page - 1) // rows_per_page

        # Create pagination controls in a single row
        pagination_cols = st.columns([4, 1, 1, 1, 4])
        with pagination_cols[1]:
            if st.button("← Previous", disabled=st.session_state.current_page == 0):
                st.session_state.current_page -= 1
        with pagination_cols[2]:
            st.markdown(f"**Page {st.session_state.current_page + 1} of {total_pages}**", unsafe_allow_html=True)
        with pagination_cols[3]:
            if st.button("Next β†’", disabled=st.session_state.current_page == total_pages - 1):
                st.session_state.current_page += 1

        # Calculate start and end indices for current page
        start_idx = st.session_state.current_page * rows_per_page
        end_idx = min((st.session_state.current_page + 1) * rows_per_page, total_rows)

        # Display the paginated dataframe
        st.dataframe(
            working_df.iloc[start_idx:end_idx].style
            .background_gradient(axis=0)
            .background_gradient(cmap='RdYlGn')
            .format(precision=2), 
            height=1000,
            use_container_width=True,
            hide_index=True
        )