File size: 33,263 Bytes
1021da9
 
 
2c53a1d
1021da9
 
d077a00
 
1021da9
 
 
 
 
e353ca4
1021da9
e353ca4
1021da9
e353ca4
1021da9
9b875c4
0a29ddd
 
1021da9
 
 
311d2c7
 
e353ca4
1021da9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a2b1e06
 
7c39179
8f07a93
a2b1e06
1021da9
 
e353ca4
 
 
 
 
 
12804c6
e353ca4
1e1b470
 
 
e353ca4
 
 
 
 
12804c6
e353ca4
64fdc53
e353ca4
 
 
 
12804c6
9b875c4
2d5b5b0
 
b326a45
1e6c2b8
5042463
2565d6d
1e6c2b8
5042463
2565d6d
1e6c2b8
2565d6d
1e6c2b8
 
2565d6d
1a7cb58
cb63196
 
e353ca4
1e1b470
e353ca4
 
ebf50e6
311d2c7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ebf50e6
311d2c7
 
 
ebf50e6
311d2c7
 
 
 
 
 
 
 
 
 
 
 
ebf50e6
311d2c7
 
 
 
 
 
 
 
 
ebf50e6
 
 
311d2c7
 
 
 
 
 
 
 
 
 
 
 
 
 
e353ca4
311d2c7
e353ca4
 
ebf50e6
e353ca4
ebf50e6
 
311d2c7
 
 
 
 
3d56cc9
ebf50e6
311d2c7
 
dcc25f6
311d2c7
 
 
ebf50e6
311d2c7
 
 
 
 
3d56cc9
ebf50e6
311d2c7
 
dcc25f6
311d2c7
 
 
ebf50e6
311d2c7
 
 
 
 
3d56cc9
ebf50e6
 
311d2c7
dcc25f6
311d2c7
 
 
ebf50e6
 
 
 
 
311d2c7
 
 
ebf50e6
 
 
311d2c7
 
 
ebf50e6
 
 
 
311d2c7
 
e353ca4
 
 
 
 
5369656
e353ca4
 
 
 
 
 
 
 
b206444
ae5a3d1
b206444
 
1e1b470
b206444
ebf50e6
 
b206444
 
ae5a3d1
5b393f0
ae5a3d1
 
 
 
 
 
a33b237
5369656
 
1e1b470
5369656
 
2c53a1d
adbaf0a
f6721c0
b206444
89bf41c
69b11f3
89bf41c
 
 
 
 
5042463
 
 
89bf41c
1e8363d
cf9e7c2
 
1e8363d
cf9e7c2
1021da9
2c53a1d
adbaf0a
6900faf
b206444
db1e9fe
69b11f3
 
db1e9fe
 
b86749e
db1e9fe
 
b86749e
 
 
 
 
efa96d9
1e8363d
1e1b470
 
40cfac2
efa96d9
40cfac2
efa96d9
dcc25f6
efa96d9
dcc25f6
1e1b470
1e8363d
1e1b470
 
40cfac2
efa96d9
40cfac2
efa96d9
dcc25f6
efa96d9
dcc25f6
436ee56
efa96d9
3d56cc9
efa96d9
3d56cc9
efa96d9
3d56cc9
436ee56
efa96d9
a25e372
1e8363d
a25e372
1e8363d
a25e372
db1e9fe
 
 
b86749e
 
 
db1e9fe
f374e83
 
a2e8e4e
f374e83
a2e8e4e
f374e83
64fdc53
1e8363d
8dcbd5a
64fdc53
f6ecd24
8dcbd5a
f6ecd24
1e8363d
8dcbd5a
f6ecd24
8dcbd5a
f6ecd24
1021da9
2c53a1d
adbaf0a
e353ca4
b206444
69b11f3
 
8d20291
 
1e8363d
ebf50e6
1e8363d
ebf50e6
8d20291
1e8363d
ebf50e6
1e8363d
ebf50e6
e353ca4
 
8d20291
e353ca4
8d20291
e353ca4
 
1e8363d
8d20291
e353ca4
 
8d20291
e353ca4
 
 
 
 
 
a25e372
e353ca4
 
 
 
 
1e8363d
e353ca4
8d20291
e353ca4
 
8d20291
e353ca4
 
 
 
 
a25e372
e353ca4
 
 
 
 
 
 
1e8363d
e353ca4
 
1e8363d
e353ca4
 
 
 
 
 
 
 
 
1e8363d
e353ca4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1e8363d
e353ca4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1e8363d
e353ca4
 
1e8363d
e353ca4
 
 
 
 
 
 
1e8363d
e353ca4
1e8363d
e353ca4
 
 
 
 
 
 
 
 
 
 
 
 
1e8363d
e353ca4
 
 
c2420ef
 
 
 
e353ca4
de73c93
 
 
 
 
 
e353ca4
de73c93
 
 
 
e353ca4
 
1e8363d
e353ca4
 
 
c2420ef
 
 
 
 
de73c93
 
 
 
 
 
c2420ef
de73c93
 
 
 
e353ca4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1e8363d
c2420ef
1e8363d
c2420ef
e353ca4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1e8363d
c2420ef
1e8363d
c2420ef
e353ca4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
636dd7e
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
import streamlit as st
import numpy as np
import pandas as pd
import gspread
import pymongo

st.set_page_config(layout="wide")

@st.cache_resource
def init_conn():
        uri = st.secrets['mongo_uri']
        client = pymongo.MongoClient(uri, retryWrites=True, serverSelectionTimeoutMS=500000)
        db = client["MLB_Database"]
        db2 = client["MLB_DFS"]

        return db, db2
    
db, db2 = init_conn()

game_format = {'Win Percentage': '{:.2%}','First Inning Lead Percentage': '{:.2%}', 'Top Score': '{:.2%}',
              'Fifth Inning Lead Percentage': '{:.2%}', '8+ runs': '{:.2%}', 'DK LevX': '{:.2%}', 'FD LevX': '{:.2%}'}

player_roo_format = {'Top_finish': '{:.2%}','Top_5_finish': '{:.2%}', 'Top_10_finish': '{:.2%}', '20+%': '{:.2%}', '2x%': '{:.2%}', '3x%': '{:.2%}',
                   '4x%': '{:.2%}'}

dk_columns = ['SP1', 'SP2', 'C', '1B', '2B', '3B', 'SS', 'OF1', 'OF2', 'OF3', 'salary', 'proj', 'Team', 'Team_count', 'Secondary', 'Secondary_count', 'Own']
fd_columns = ['P', 'C_1B', '2B', '3B', 'SS', 'OF1', 'OF2', 'OF3', 'UTIL', 'salary', 'proj', 'Team', 'Team_count', 'Secondary', 'Secondary_count', 'Own']

st.markdown("""
<style>
    /* Tab styling */
    .stTabs [data-baseweb="tab-list"] {
        gap: 8px;
        padding: 4px;
    }
    .stTabs [data-baseweb="tab"] {
        height: 50px;
        white-space: pre-wrap;
        background-color: #DAA520;
        color: white;
        border-radius: 10px;
        gap: 1px;
        padding: 10px 20px;
        font-weight: bold;
        transition: all 0.3s ease;
    }
    .stTabs [aria-selected="true"] {
        background-color: #DAA520;
        border: 3px solid #FFD700;
        color: white;
    }
    .stTabs [data-baseweb="tab"]:hover {
        background-color: #FFD700;
        cursor: pointer;
    }

    div[data-baseweb="select"] > div {
        background-color: #DAA520;
        color: white;
    }
</style>""", unsafe_allow_html=True)

@st.cache_resource(ttl = 60)
def init_baselines():
    collection = db["Player_Range_Of_Outcomes"] 
    cursor = collection.find()
    player_frame = pd.DataFrame(cursor)

    roo_data = player_frame.drop(columns=['_id'])
    roo_data['Salary'] = roo_data['Salary'].astype(int)
    
    dk_roo = roo_data[roo_data['Site'] == 'Draftkings']
    fd_roo = roo_data[roo_data['Site'] == 'Fanduel']

    collection = db["Player_SD_Range_Of_Outcomes"] 
    cursor = collection.find()
    player_frame = pd.DataFrame(cursor)

    sd_roo_data = player_frame.drop(columns=['_id'])
    sd_roo_data['Salary'] = sd_roo_data['Salary'].astype(int)
    sd_roo_data = sd_roo_data.rename(columns={'Own': 'Own%'})

    collection = db["Scoring_Percentages"] 
    cursor = collection.find()
    team_frame = pd.DataFrame(cursor)
    scoring_percentages = team_frame.drop(columns=['_id'])
    scoring_percentages = scoring_percentages[['Names', 'Avg First Inning', 'First Inning Lead Percentage', 'Avg Fifth Inning', 'Fifth Inning Lead Percentage', 'Avg Score', '8+ runs', 'Win Percentage', 'Slate', 'Top Score']]
    scoring_percentages['8+ runs'] = scoring_percentages['8+ runs'].replace('%', '', regex=True).astype(float)
    scoring_percentages['Win Percentage'] = scoring_percentages['Win Percentage'].replace('%', '', regex=True).astype(float)
    scoring_percentages['Top Score'] = scoring_percentages['Top Score'].replace('', np.nan).astype(float)
    dk_hitters_only = dk_roo[dk_roo['pos_group'] != 'Pitchers']
    dk_hitters_only = dk_hitters_only.replace('CWS', 'CHW')
    dk_team_ownership = dk_hitters_only.groupby('Team')['Own%'].sum().reset_index()
    fd_hitters_only = fd_roo[fd_roo['pos_group'] != 'Pitchers']
    fd_hitters_only = fd_hitters_only.replace('CWS', 'CHW')
    fd_team_ownership = fd_hitters_only.groupby('Team')['Own%'].sum().reset_index()
    scoring_percentages = scoring_percentages.merge(dk_team_ownership, left_on='Names', right_on='Team', how='left')
    scoring_percentages.rename(columns={'Own%': 'DK Own%'}, inplace=True)
    scoring_percentages.drop('Team', axis=1, inplace=True)
    scoring_percentages = scoring_percentages.merge(fd_team_ownership, left_on='Names', right_on='Team', how='left')
    scoring_percentages.rename(columns={'Own%': 'FD Own%'}, inplace=True)
    scoring_percentages.drop('Team', axis=1, inplace=True)
    scoring_percentages['DK LevX'] = scoring_percentages['Top Score'].rank(pct=True).astype(float) - scoring_percentages['DK Own%'].rank(pct=True).astype(float)
    scoring_percentages['FD LevX'] = scoring_percentages['Top Score'].rank(pct=True).astype(float) - scoring_percentages['FD Own%'].rank(pct=True).astype(float)
    
    return roo_data, sd_roo_data, scoring_percentages, dk_roo, fd_roo

@st.cache_data(ttl = 60)
def init_DK_lineups(type_var, slate_var):  
    
    if type_var == 'Regular':
        if slate_var == 'Main':
            collection = db['DK_MLB_name_map']
            cursor = collection.find()
            raw_data = pd.DataFrame(list(cursor))
            names_dict = dict(zip(raw_data['key'], raw_data['value']))

            collection = db['DK_MLB_seed_frame']
            cursor = collection.find().limit(10000)

            raw_display = pd.DataFrame(list(cursor))
            raw_display = raw_display[['SP1', 'SP2', 'C', '1B', '2B', '3B', 'SS', 'OF1', 'OF2', 'OF3', 'salary', 'proj', 'Team', 'Team_count', 'Secondary', 'Secondary_count', 'Own']]
            dict_columns = ['SP1', 'SP2', 'C', '1B', '2B', '3B', 'SS', 'OF1', 'OF2', 'OF3']
            # Map names
            raw_display[dict_columns] = raw_display[dict_columns].apply(lambda x: x.map(names_dict))
        elif slate_var == 'Secondary':
            collection = db['DK_MLB_Secondary_name_map']
            cursor = collection.find()
            raw_data = pd.DataFrame(list(cursor))
            names_dict = dict(zip(raw_data['key'], raw_data['value']))
            
            collection = db['DK_MLB_Secondary_seed_frame']
            cursor = collection.find().limit(10000)

            raw_display = pd.DataFrame(list(cursor))
            raw_display = raw_display[['SP1', 'SP2', 'C', '1B', '2B', '3B', 'SS', 'OF1', 'OF2', 'OF3', 'salary', 'proj', 'Team', 'Team_count', 'Secondary', 'Secondary_count', 'Own']]
            dict_columns = ['SP1', 'SP2', 'C', '1B', '2B', '3B', 'SS', 'OF1', 'OF2', 'OF3']
            # Map names
            raw_display[dict_columns] = raw_display[dict_columns].apply(lambda x: x.map(names_dict))
        elif slate_var == 'Auxiliary':
            collection = db['DK_MLB_Turbo_name_map']
            cursor = collection.find()
            raw_data = pd.DataFrame(list(cursor))
            names_dict = dict(zip(raw_data['key'], raw_data['value']))
            
            collection = db['DK_MLB_Turbo_seed_frame']
            cursor = collection.find().limit(10000)

            raw_display = pd.DataFrame(list(cursor))
            raw_display = raw_display[['SP1', 'SP2', 'C', '1B', '2B', '3B', 'SS', 'OF1', 'OF2', 'OF3', 'salary', 'proj', 'Team', 'Team_count', 'Secondary', 'Secondary_count', 'Own']]
            dict_columns = ['SP1', 'SP2', 'C', '1B', '2B', '3B', 'SS', 'OF1', 'OF2', 'OF3']
            # Map names
            raw_display[dict_columns] = raw_display[dict_columns].apply(lambda x: x.map(names_dict))
    elif type_var == 'Showdown':
        if slate_var == 'Main':
            collection = db2['DK_MLB_SD1_seed_frame']
            cursor = collection.find().limit(10000)

            raw_display = pd.DataFrame(list(cursor))
            raw_display = raw_display[['CPT', 'FLEX1', 'FLEX2', 'FLEX3', 'FLEX4', 'FLEX5', 'salary', 'proj', 'Own']]
        elif slate_var == 'Secondary':
            collection = db2['DK_MLB_SD2_seed_frame']
            cursor = collection.find().limit(10000)

            raw_display = pd.DataFrame(list(cursor))
            raw_display = raw_display[['CPT', 'FLEX1', 'FLEX2', 'FLEX3', 'FLEX4', 'FLEX5', 'salary', 'proj', 'Own']]
        elif slate_var == 'Auxiliary':
            collection = db2['DK_MLB_SD3_seed_frame']
            cursor = collection.find().limit(10000)

            raw_display = pd.DataFrame(list(cursor))
            raw_display = raw_display[['CPT', 'FLEX1', 'FLEX2', 'FLEX3', 'FLEX4', 'FLEX5', 'salary', 'proj', 'Own']]

    DK_seed = raw_display.to_numpy()

    return DK_seed

@st.cache_data(ttl = 60)
def init_FD_lineups(type_var,slate_var):  
        
        if type_var == 'Regular':
            if slate_var == 'Main':
                collection = db['FD_MLB_name_map']
                cursor = collection.find()
                raw_data = pd.DataFrame(list(cursor))
                names_dict = dict(zip(raw_data['key'], raw_data['value']))

                collection = db['FD_MLB_seed_frame']
                cursor = collection.find().limit(10000)

                raw_display = pd.DataFrame(list(cursor))
                raw_display = raw_display[['P', 'C_1B', '2B', '3B', 'SS', 'OF1', 'OF2', 'OF3', 'UTIL', 'salary', 'proj', 'Team', 'Team_count', 'Secondary', 'Secondary_count', 'Own']]
                dict_columns = ['P', 'C_1B', '2B', '3B', 'SS', 'OF1', 'OF2', 'OF3']
                # Map names
                raw_display[dict_columns] = raw_display[dict_columns].apply(lambda x: x.map(names_dict))
            elif slate_var == 'Secondary':
                collection = db['FD_MLB_Secondary_name_map']
                cursor = collection.find()
                raw_data = pd.DataFrame(list(cursor))
                names_dict = dict(zip(raw_data['key'], raw_data['value']))

                collection = db['FD_MLB_Secondary_seed_frame']
                cursor = collection.find().limit(10000)

                raw_display = pd.DataFrame(list(cursor))
                raw_display = raw_display[['P', 'C_1B', '2B', '3B', 'SS', 'OF1', 'OF2', 'OF3', 'UTIL', 'salary', 'proj', 'Team', 'Team_count', 'Secondary', 'Secondary_count', 'Own']]
                dict_columns = ['P', 'C_1B', '2B', '3B', 'SS', 'OF1', 'OF2', 'OF3']
                # Map names
                raw_display[dict_columns] = raw_display[dict_columns].apply(lambda x: x.map(names_dict))
            elif slate_var == 'Auxiliary':
                collection = db['FD_MLB_Turbo_name_map']
                cursor = collection.find()
                raw_data = pd.DataFrame(list(cursor))
                names_dict = dict(zip(raw_data['key'], raw_data['value']))

                collection = db['FD_MLB_Turbo_seed_frame']
                cursor = collection.find().limit(10000)
            
                raw_display = pd.DataFrame(list(cursor))
                raw_display = raw_display[['P', 'C_1B', '2B', '3B', 'SS', 'OF1', 'OF2', 'OF3', 'UTIL', 'salary', 'proj', 'Team', 'Team_count', 'Secondary', 'Secondary_count', 'Own']]
                dict_columns = ['P', 'C_1B', '2B', '3B', 'SS', 'OF1', 'OF2', 'OF3']
                # Map names
                raw_display[dict_columns] = raw_display[dict_columns].apply(lambda x: x.map(names_dict))

        elif type_var == 'Showdown':
            if slate_var == 'Main':
                collection = db2['FD_MLB_SD1_seed_frame']
                cursor = collection.find().limit(10000)

                raw_display = pd.DataFrame(list(cursor))
                raw_display = raw_display[['CPT', 'FLEX1', 'FLEX2', 'FLEX3', 'FLEX4', 'salary', 'proj', 'Own']]
            elif slate_var == 'Secondary':
                collection = db2['FD_MLB_SD2_seed_frame']
                cursor = collection.find().limit(10000)

                raw_display = pd.DataFrame(list(cursor))
                raw_display = raw_display[['CPT', 'FLEX1', 'FLEX2', 'FLEX3', 'FLEX4', 'salary', 'proj', 'Own']]
            elif slate_var == 'Auxiliary':
                collection = db2['FD_MLB_SD3_seed_frame']
                cursor = collection.find().limit(10000)
            
                raw_display = pd.DataFrame(list(cursor))
                raw_display = raw_display[['CPT', 'FLEX1', 'FLEX2', 'FLEX3', 'FLEX4', 'salary', 'proj', 'Own']]
    
        FD_seed = raw_display.to_numpy()

        return FD_seed

@st.cache_data
def convert_df_to_csv(df):
    return df.to_csv().encode('utf-8')

@st.cache_data
def convert_df(array):
    array = pd.DataFrame(array, columns=column_names)
    return array.to_csv().encode('utf-8')

col1, col2 = st.columns([1, 9])
with col1:
    if st.button("Load/Reset Data", key='reset'):
        st.cache_data.clear()
        roo_data, sd_roo_data, scoring_percentages, dk_roo, fd_roo = init_baselines()
        hold_display = roo_data
        dk_lineups = init_DK_lineups('Regular', 'Main')
        fd_lineups = init_FD_lineups('Regular', 'Main')
        for key in st.session_state.keys():
            del st.session_state[key]
with col2:
    with st.container():
        col1, col2 = st.columns([3, 3])
        with col1:
            view_var = st.selectbox("Select view", ["Simple", "Advanced"], key='view_var')
        with col2:
            site_var = st.selectbox("What site do you want to view?", ('Draftkings', 'Fanduel'), key='site_var')
        

tab1, tab2, tab3 = st.tabs(["Scoring Percentages", "Player ROO", "Optimals"])

roo_data, sd_roo_data, scoring_percentages, dk_roo, fd_roo = init_baselines()
hold_display = roo_data

with tab1:
    st.header("Scoring Percentages")
    with st.expander("Info and Filters"):
        with st.container():
            slate_var1 = st.radio("Which data are you loading?", ('Main Slate', 'All Games'), key='slate_var1')
            own_var1 = st.radio("How would you like to display team ownership?", ('Sum', 'Average'), key='own_var1')
    
    if slate_var1 == 'Main Slate':
        scoring_percentages = scoring_percentages[scoring_percentages['Slate'] == 'Main']
    elif slate_var1 != 'Main Slate':
        pass

    scoring_percentages = scoring_percentages.sort_values(by='8+ runs', ascending=False)
    scoring_percentages = scoring_percentages.drop('Slate', axis=1)
    
    if view_var == "Simple":
        scoring_percentages = scoring_percentages[['Names', 'Avg Score', '8+ runs', 'Win Percentage']]
        st.dataframe(scoring_percentages.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(game_format, precision=2), height=750, use_container_width = True, hide_index=True)
    elif view_var == "Advanced":
        st.dataframe(scoring_percentages.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(game_format, precision=2), height=750, use_container_width = True, hide_index=True)

with tab2:
    st.header("Player ROO")
    with st.expander("Info and Filters"):
        with st.container():
            slate_type_var2 = st.radio("Which slate type are you loading?", ('Regular', 'Showdown'), key='slate_type_var2')
            slate_var2 = st.radio("Which slate data are you loading?", ('Main', 'Secondary', 'Auxiliary'), key='slate_var2')
            pos_var2 = st.radio("Which position group would you like to view?", ('All', 'Pitchers', 'Hitters'), key='pos_var2')
            team_var2 = st.selectbox("Which team would you like to view?",  ['All', 'Specific'], key='team_var2')
            if team_var2 == 'Specific':
                team_select2 = st.multiselect("Select your team(s)", roo_data['Team'].unique(), key='team_select2')
            else:
                team_select2 = None
            pos_var2 = st.selectbox("Which position(s) would you like to view?",  ['All', 'Specific'], key='pos_var2')
            if pos_var2 == 'Specific':
                pos_select2 = st.multiselect("Select your position(s)", roo_data['Position'].unique(), key='pos_select2')
            else:
                pos_select2 = None
    if slate_type_var2 == 'Regular':
        if site_var == 'Draftkings':
        
            player_roo_raw = dk_roo.copy()

            if pos_var2 == 'All':
                pass
            elif pos_var2 == 'Pitchers':
                player_roo_raw = player_roo_raw[player_roo_raw['pos_group'] == 'Pitchers']
            elif pos_var2 == 'Hitters':
                player_roo_raw = player_roo_raw[player_roo_raw['pos_group'] == 'Hitters']

        elif site_var == 'Fanduel':
            
            player_roo_raw = fd_roo.copy()

            if pos_var2 == 'All':
                pass
            elif pos_var2 == 'Pitchers':
                player_roo_raw = player_roo_raw[player_roo_raw['pos_group'] == 'Pitchers']
            elif pos_var2 == 'Hitters':
                player_roo_raw = player_roo_raw[player_roo_raw['pos_group'] == 'Hitters']
        
        if slate_var2 == 'Main':
            player_roo_raw = player_roo_raw[player_roo_raw['Slate'] == 'main_slate']
        elif slate_var2 == 'Secondary':
            player_roo_raw = player_roo_raw[player_roo_raw['Slate'] == 'secondary_slate']
        elif slate_var2 == 'Auxiliary':
            player_roo_raw = player_roo_raw[player_roo_raw['Slate'] == 'turbo_slate']
            
    elif slate_type_var2 == 'Showdown':
        player_roo_raw = sd_roo_data.copy()
        if site_var == 'Draftkings':
            player_roo_raw['Site'] = 'Draftkings'
        elif site_var == 'Fanduel':
            player_roo_raw['Site'] = 'Fanduel'
    
    if team_select2:
        player_roo_raw = player_roo_raw[player_roo_raw['Team'].isin(team_select2)]
    if pos_select2:
        position_mask = player_roo_raw['Position'].apply(lambda x: any(pos in x for pos in pos_select2))
        player_roo_raw = player_roo_raw[position_mask]
    
    player_roo_disp = player_roo_raw
    
    if slate_type_var2 == 'Regular':
        player_roo_disp = player_roo_disp.drop(columns=['Site', 'Slate', 'pos_group', 'timestamp', 'player_ID'])
    elif slate_type_var2 == 'Showdown':
        player_roo_disp = player_roo_disp.drop(columns=['site', 'slate', 'version', 'timestamp'])

    if view_var == "Simple":
        try:
            player_roo_disp = player_roo_disp[['Player', 'Position', 'Salary', 'Median', 'Ceiling', 'Own%']]
            st.dataframe(player_roo_disp.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(player_roo_format, precision=2), height=750, use_container_width = True, hide_index=True)
        except:
            st.dataframe(player_roo_disp.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(player_roo_format, precision=2), height=750, use_container_width = True, hide_index=True)
    elif view_var == "Advanced":
        try:
            st.dataframe(player_roo_disp.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(player_roo_format, precision=2), height=750, use_container_width = True, hide_index=True)
        except:
            st.dataframe(player_roo_disp.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(player_roo_format, precision=2), height=750, use_container_width = True, hide_index=True)

with tab3:
    st.header("Optimals")
    with st.expander("Info and Filters"):
        with st.container():
            slate_type_var3 = st.radio("Which slate type are you loading?", ('Regular', 'Showdown'), key='slate_type_var3')
            slate_var3 = st.radio("Which slate data are you loading?", ('Main', 'Secondary', 'Auxiliary'), key='slate_var3')

        if slate_type_var3 == 'Regular':
            if site_var == 'Draftkings':
                dk_lineups = init_DK_lineups(slate_type_var3, slate_var3)
            elif site_var == 'Fanduel':
                fd_lineups = init_FD_lineups(slate_type_var3, slate_var3)
        elif slate_type_var3 == 'Showdown':
            if site_var == 'Draftkings':
                dk_lineups = init_DK_lineups(slate_type_var3, slate_var3)
            elif site_var == 'Fanduel':
                fd_lineups = init_FD_lineups(slate_type_var3, slate_var3)
        lineup_num_var = st.number_input("How many lineups do you want to display?", min_value=1, max_value=1000, value=150, step=1)
        
        if slate_type_var3 == 'Regular':
                raw_baselines = roo_data
        elif slate_type_var3 == 'Showdown':
            raw_baselines = sd_roo_data
        
        if site_var == 'Draftkings':
            if slate_type_var3 == 'Regular':
                ROO_slice = raw_baselines[raw_baselines['Site'] == 'Draftkings']
                player_salaries = dict(zip(ROO_slice['Player'], ROO_slice['Salary']))
            elif slate_type_var3 == 'Showdown':
                player_salaries = dict(zip(raw_baselines['Player'], raw_baselines['Salary']))
            # Get the minimum and maximum ownership values from dk_lineups
            min_own = np.min(dk_lineups[:,8])
            max_own = np.max(dk_lineups[:,8])
            column_names = dk_columns
            
            player_var1 = st.radio("Do you want a frame with specific Players?", ('Full Slate', 'Specific Players'), key='player_var1')
            if player_var1 == 'Specific Players':
                    player_var2 = st.multiselect('Which players do you want?', options = raw_baselines['Player'].unique())
            elif player_var1 == 'Full Slate':
                    player_var2 = raw_baselines.Player.values.tolist()
                    
        elif site_var == 'Fanduel':
            raw_baselines = hold_display
            if slate_type_var3 == 'Regular':
                ROO_slice = raw_baselines[raw_baselines['Site'] == 'Fanduel']
                player_salaries = dict(zip(ROO_slice['Player'], ROO_slice['Salary']))
            elif slate_type_var3 == 'Showdown':
                player_salaries = dict(zip(raw_baselines['Player'], raw_baselines['Salary']))
            min_own = np.min(fd_lineups[:,8])
            max_own = np.max(fd_lineups[:,8])
            column_names = fd_columns
            
            player_var1 = st.radio("Do you want a frame with specific Players?", ('Full Slate', 'Specific Players'), key='player_var1')
            if player_var1 == 'Specific Players':
                    player_var2 = st.multiselect('Which players do you want?', options = raw_baselines['Player'].unique())
            elif player_var1 == 'Full Slate':
                    player_var2 = raw_baselines.Player.values.tolist()

        if st.button("Prepare data export", key='data_export'):
            data_export = st.session_state.working_seed.copy()
            # if site_var == 'Draftkings':
            #     for col_idx in range(6):
            #         data_export[:, col_idx] = np.array([id_dict.get(player, player) for player in data_export[:, col_idx]])
            # elif site_var == 'Fanduel':
            #     for col_idx in range(6):
            #         data_export[:, col_idx] = np.array([id_dict.get(player, player) for player in data_export[:, col_idx]])
            st.download_button(
                label="Export optimals set",
                data=convert_df(data_export),
                file_name='MLB_optimals_export.csv',
                mime='text/csv',
            )
        
    if site_var == 'Draftkings':
        if 'working_seed' in st.session_state:
            st.session_state.working_seed = st.session_state.working_seed
            if player_var1 == 'Specific Players':
                st.session_state.working_seed = st.session_state.working_seed[np.equal.outer(st.session_state.working_seed, player_var2).any(axis=1).all(axis=1)]
            elif player_var1 == 'Full Slate':
                st.session_state.working_seed = dk_lineups.copy()
            st.session_state.data_export_display = pd.DataFrame(st.session_state.working_seed[0:lineup_num_var], columns=column_names)
        elif 'working_seed' not in st.session_state:
            st.session_state.working_seed = dk_lineups.copy()
            st.session_state.working_seed = st.session_state.working_seed
            if player_var1 == 'Specific Players':
                st.session_state.working_seed = st.session_state.working_seed[np.equal.outer(st.session_state.working_seed, player_var2).any(axis=1).all(axis=1)]
            elif player_var1 == 'Full Slate':
                st.session_state.working_seed = dk_lineups.copy()
            st.session_state.data_export_display = pd.DataFrame(st.session_state.working_seed[0:lineup_num_var], columns=column_names)
        
    elif site_var == 'Fanduel':
        if 'working_seed' in st.session_state:
            st.session_state.working_seed = st.session_state.working_seed
            if player_var1 == 'Specific Players':
                st.session_state.working_seed = st.session_state.working_seed[np.equal.outer(st.session_state.working_seed, player_var2).any(axis=1).all(axis=1)]
            elif player_var1 == 'Full Slate':
                st.session_state.working_seed = fd_lineups.copy()
            st.session_state.data_export_display = pd.DataFrame(st.session_state.working_seed[0:lineup_num_var], columns=column_names)
        elif 'working_seed' not in st.session_state:
            st.session_state.working_seed = fd_lineups.copy()
            st.session_state.working_seed = st.session_state.working_seed
            if player_var1 == 'Specific Players':
                st.session_state.working_seed = st.session_state.working_seed[np.equal.outer(st.session_state.working_seed, player_var2).any(axis=1).all(axis=1)]
            elif player_var1 == 'Full Slate':
                st.session_state.working_seed = fd_lineups.copy()
            st.session_state.data_export_display = pd.DataFrame(st.session_state.working_seed[0:lineup_num_var], columns=column_names)

    export_file = st.session_state.data_export_display.copy()
    # if site_var == 'Draftkings':
    #     for col_idx in range(6):
    #         export_file.iloc[:, col_idx] = export_file.iloc[:, col_idx].map(id_dict)
    # elif site_var == 'Fanduel':
    #     for col_idx in range(6):
    #         export_file.iloc[:, col_idx] = export_file.iloc[:, col_idx].map(id_dict)
            
    with st.container():
        if st.button("Reset Optimals", key='reset3'):
            for key in st.session_state.keys():
                del st.session_state[key]
            if site_var == 'Draftkings':
                st.session_state.working_seed = dk_lineups.copy()
            elif site_var == 'Fanduel':
                st.session_state.working_seed = fd_lineups.copy()
        if 'data_export_display' in st.session_state:
            st.dataframe(st.session_state.data_export_display.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(precision=2), height=500, use_container_width = True)
        st.download_button(
            label="Export display optimals",
            data=convert_df(export_file),
            file_name='MLB_display_optimals.csv',
            mime='text/csv',
        )
    
    with st.container():
        if 'working_seed' in st.session_state:
            # Create a new dataframe with summary statistics
            if site_var == 'Draftkings':
                summary_df = pd.DataFrame({
                    'Metric': ['Min', 'Average', 'Max', 'STDdev'],
                    'Salary': [
                        np.min(st.session_state.working_seed[:,10]),
                        np.mean(st.session_state.working_seed[:,10]),
                        np.max(st.session_state.working_seed[:,10]),
                        np.std(st.session_state.working_seed[:,10])
                    ],
                    'Proj': [
                        np.min(st.session_state.working_seed[:,11]),
                        np.mean(st.session_state.working_seed[:,11]),
                        np.max(st.session_state.working_seed[:,11]),
                        np.std(st.session_state.working_seed[:,11])
                    ],
                    'Own': [
                        np.min(st.session_state.working_seed[:,16]),
                        np.mean(st.session_state.working_seed[:,16]),
                        np.max(st.session_state.working_seed[:,16]),
                        np.std(st.session_state.working_seed[:,16])
                    ]
                })
            elif site_var == 'Fanduel':
                summary_df = pd.DataFrame({
                    'Metric': ['Min', 'Average', 'Max', 'STDdev'],
                    'Salary': [
                        np.min(st.session_state.working_seed[:,9]),
                        np.mean(st.session_state.working_seed[:,9]),
                        np.max(st.session_state.working_seed[:,9]),
                        np.std(st.session_state.working_seed[:,9])
                    ],
                    'Proj': [
                        np.min(st.session_state.working_seed[:,10]),
                        np.mean(st.session_state.working_seed[:,10]),
                        np.max(st.session_state.working_seed[:,10]),
                        np.std(st.session_state.working_seed[:,10])
                    ],
                    'Own': [
                        np.min(st.session_state.working_seed[:,15]),
                        np.mean(st.session_state.working_seed[:,15]),
                        np.max(st.session_state.working_seed[:,15]),
                        np.std(st.session_state.working_seed[:,15])
                    ]
                })

            # Set the index of the summary dataframe as the "Metric" column
            summary_df = summary_df.set_index('Metric')

            # Display the summary dataframe
            st.subheader("Optimal Statistics")
            st.dataframe(summary_df.style.format({
                'Salary': '{:.2f}',
                'Proj': '{:.2f}',
                'Own': '{:.2f}'
            }).background_gradient(cmap='RdYlGn', axis=0, subset=['Salary', 'Proj', 'Own']), use_container_width=True)

    with st.container():
        tab1, tab2 = st.tabs(["Display Frequency", "Seed Frame Frequency"])
        with tab1:
            if 'data_export_display' in st.session_state:
                if site_var == 'Draftkings':
                    player_columns = st.session_state.data_export_display.iloc[:, :10]
                elif site_var == 'Fanduel':
                    player_columns = st.session_state.data_export_display.iloc[:, :9]
                
                # Flatten the DataFrame and count unique values
                value_counts = player_columns.values.flatten().tolist()
                value_counts = pd.Series(value_counts).value_counts()
                
                percentages = (value_counts / lineup_num_var * 100).round(2)
                
                # Create a DataFrame with the results
                summary_df = pd.DataFrame({
                    'Player': value_counts.index,
                    'Frequency': value_counts.values,
                    'Percentage': percentages.values
                })
                
                # Sort by frequency in descending order
                summary_df['Salary'] = summary_df['Player'].map(player_salaries)
                summary_df = summary_df[['Player', 'Salary', 'Frequency', 'Percentage']]
                summary_df = summary_df.sort_values('Frequency', ascending=False)
                summary_df = summary_df.set_index('Player')
                
                # Display the table
                st.write("Player Frequency Table:")
                st.dataframe(summary_df.style.format({'Percentage': '{:.2f}%'}), height=500, use_container_width=True)
            
                st.download_button(
                    label="Export player frequency",
                    data=convert_df_to_csv(summary_df),
                    file_name='MLB_player_frequency.csv',
                    mime='text/csv',
                )
        with tab2:
            if 'working_seed' in st.session_state:
                if site_var == 'Draftkings':
                    player_columns = st.session_state.working_seed[:, :10]
                elif site_var == 'Fanduel':
                    player_columns = st.session_state.working_seed[:, :9]
                
                # Flatten the DataFrame and count unique values
                value_counts = player_columns.flatten().tolist()
                value_counts = pd.Series(value_counts).value_counts()
                
                percentages = (value_counts / len(st.session_state.working_seed) * 100).round(2)
                # Create a DataFrame with the results
                summary_df = pd.DataFrame({
                    'Player': value_counts.index,
                    'Frequency': value_counts.values,
                    'Percentage': percentages.values
                })
                
                # Sort by frequency in descending order
                summary_df['Salary'] = summary_df['Player'].map(player_salaries)
                summary_df = summary_df[['Player', 'Salary', 'Frequency', 'Percentage']]
                summary_df = summary_df.sort_values('Frequency', ascending=False)
                summary_df = summary_df.set_index('Player')
                
                # Display the table
                st.write("Seed Frame Frequency Table:")
                st.dataframe(summary_df.style.format({'Percentage': '{:.2f}%'}), height=500, use_container_width=True)
            
                st.download_button(
                    label="Export seed frame frequency",
                    data=convert_df_to_csv(summary_df),
                    file_name='MLB_seed_frame_frequency.csv',
                    mime='text/csv',
                )