Spaces:
Running
Running
File size: 39,177 Bytes
4036c64 6ef6fac 6a6dae7 6ef6fac 4036c64 6a6dae7 4036c64 6a6dae7 b647ce4 6a6dae7 4036c64 6a6dae7 6ef6fac b647ce4 6a6dae7 b647ce4 6ef6fac 9990caa 5ae652c 96799c9 3dbcf03 96799c9 3dbcf03 96799c9 3dbcf03 96799c9 ff22721 4036c64 f4dd7c9 6ef6fac 4036c64 f4dd7c9 0077aa4 f4dd7c9 6ef6fac 4036c64 5b35c1a f4dd7c9 765743d f4dd7c9 0077aa4 f4dd7c9 765743d 6a6dae7 f4dd7c9 277c307 d617731 5b35c1a 6ef6fac 53152e8 6887e0b f4dd7c9 1bbf3e4 f4dd7c9 fb9a054 49a570a 02183a0 6ef6fac ff22721 b647ce4 a67075a b647ce4 02183a0 b647ce4 a67075a 02183a0 b647ce4 ff22721 b647ce4 a67075a b647ce4 02183a0 b647ce4 a67075a 02183a0 b647ce4 6ef6fac b647ce4 02183a0 3d72ea9 d617731 e3896eb 6887e0b 767e1e6 3fdce20 6ef6fac 34ce6c5 0e8dd68 34ce6c5 de9b810 34ce6c5 de9b810 34ce6c5 0e8dd68 de9b810 34ce6c5 0e8dd68 34ce6c5 de9b810 34ce6c5 767e1e6 20f53c3 dc913ed 20f53c3 96799c9 20f53c3 96799c9 20f53c3 2930962 20f53c3 96799c9 20f53c3 ac9b445 3f36e0d ac9b445 822a6cd ac9b445 83d45be ac9b445 25d03a1 ac9b445 83d45be ac9b445 25d03a1 53152e8 dc913ed 66b0ac2 3d97c49 66b0ac2 48ec8ac 66b0ac2 b647ce4 66b0ac2 48ec8ac 66b0ac2 b647ce4 a819472 66b0ac2 a819472 66b0ac2 a819472 66b0ac2 25e92b8 66b0ac2 25e92b8 66b0ac2 5f2bcd1 1d2b4b5 66b0ac2 1d2b4b5 66b0ac2 4336d9e 66b0ac2 4336d9e 66b0ac2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 |
import streamlit as st
import numpy as np
import pandas as pd
import streamlit as st
import gspread
import pymongo
st.set_page_config(layout="wide")
@st.cache_resource
def init_conn():
scope = ['https://spreadsheets.google.com/feeds', 'https://www.googleapis.com/auth/drive']
credentials = {
"type": "service_account",
"project_id": "model-sheets-connect",
"private_key_id": st.secrets['model_sheets_connect_pk'],
"private_key": "-----BEGIN PRIVATE KEY-----\nMIIEvgIBADANBgkqhkiG9w0BAQEFAASCBKgwggSkAgEAAoIBAQDiu1v/e6KBKOcK\ncx0KQ23nZK3ZVvADYy8u/RUn/EDI82QKxTd/DizRLIV81JiNQxDJXSzgkbwKYEDm\n48E8zGvupU8+Nk76xNPakrQKy2Y8+VJlq5psBtGchJTuUSHcXU5Mg2JhQsB376PJ\nsCw552K6Pw8fpeMDJDZuxpKSkaJR6k9G5Dhf5q8HDXnC5Rh/PRFuKJ2GGRpX7n+2\nhT/sCax0J8jfdTy/MDGiDfJqfQrOPrMKELtsGHR9Iv6F4vKiDqXpKfqH+02E9ptz\nBk+MNcbZ3m90M8ShfRu28ebebsASfarNMzc3dk7tb3utHOGXKCf4tF8yYKo7x8BZ\noO9X4gSfAgMBAAECggEAU8ByyMpSKlTCF32TJhXnVJi/kS+IhC/Qn5JUDMuk4LXr\naAEWsWO6kV/ZRVXArjmuSzuUVrXumISapM9Ps5Ytbl95CJmGDiLDwRL815nvv6k3\nUyAS8EGKjz74RpoIoH6E7EWCAzxlnUgTn+5oP9Flije97epYk3H+e2f1f5e1Nn1d\nYNe8U+1HqJgILcxA1TAUsARBfoD7+K3z/8DVPHI8IpzAh6kTHqhqC23Rram4XoQ6\nzj/ZdVBjvnKuazETfsD+Vl3jGLQA8cKQVV70xdz3xwLcNeHsbPbpGBpZUoF73c65\nkAXOrjYl0JD5yAk+hmYhXr6H9c6z5AieuZGDrhmlFQKBgQDzV6LRXmjn4854DP/J\nI82oX2GcI4eioDZPRukhiQLzYerMQBmyqZIRC+/LTCAhYQSjNgMa+ZKyvLqv48M0\n/x398op/+n3xTs+8L49SPI48/iV+mnH7k0WI/ycd4OOKh8rrmhl/0EWb9iitwJYe\nMjTV/QxNEpPBEXfR1/mvrN/lVQKBgQDuhomOxUhWVRVH6x03slmyRBn0Oiw4MW+r\nrt1hlNgtVmTc5Mu+4G0USMZwYuOB7F8xG4Foc7rIlwS7Ic83jMJxemtqAelwOLdV\nXRLrLWJfX8+O1z/UE15l2q3SUEnQ4esPHbQnZowHLm0mdL14qSVMl1mu1XfsoZ3z\nJZTQb48CIwKBgEWbzQRtKD8lKDupJEYqSrseRbK/ax43DDITS77/DWwHl33D3FYC\nMblUm8ygwxQpR4VUfwDpYXBlklWcJovzamXpSnsfcYVkkQH47NuOXPXPkXQsw+w+\nDYcJzeu7F/vZqk9I7oBkWHUrrik9zPNoUzrfPvSRGtkAoTDSwibhoc5dAoGBAMHE\nK0T/ANeZQLNuzQps6S7G4eqjwz5W8qeeYxsdZkvWThOgDd/ewt3ijMnJm5X05hOn\ni4XF1euTuvUl7wbqYx76Wv3/1ZojiNNgy7ie4rYlyB/6vlBS97F4ZxJdxMlabbCW\n6b3EMWa4EVVXKoA1sCY7IVDE+yoQ1JYsZmq45YzPAoGBANWWHuVueFGZRDZlkNlK\nh5OmySmA0NdNug3G1upaTthyaTZ+CxGliwBqMHAwpkIRPwxUJpUwBTSEGztGTAxs\nWsUOVWlD2/1JaKSmHE8JbNg6sxLilcG6WEDzxjC5dLL1OrGOXj9WhC9KX3sq6qb6\nF/j9eUXfXjAlb042MphoF3ZC\n-----END PRIVATE KEY-----\n",
"client_email": "[email protected]",
"client_id": "100369174533302798535",
"auth_uri": "https://accounts.google.com/o/oauth2/auth",
"token_uri": "https://oauth2.googleapis.com/token",
"auth_provider_x509_cert_url": "https://www.googleapis.com/oauth2/v1/certs",
"client_x509_cert_url": "https://www.googleapis.com/robot/v1/metadata/x509/gspread-connection%40model-sheets-connect.iam.gserviceaccount.com"
}
credentials2 = {
"type": "service_account",
"project_id": "sheets-api-connect-378620",
"private_key_id": st.secrets['sheets_api_connect_pk'],
"private_key": "-----BEGIN PRIVATE KEY-----\nMIIEvQIBADANBgkqhkiG9w0BAQEFAASCBKcwggSjAgEAAoIBAQCtKa01beXwc88R\nnPZVQTNPVQuBnbwoOfc66gW3547ja/UEyIGAF112dt/VqHprRafkKGmlg55jqJNt\na4zceLKV+wTm7vBu7lDISTJfGzCf2TrxQYNqwMKE2LOjI69dBM8u4Dcb4k0wcp9v\ntW1ZzLVVuwTvmrg7JBHjiSaB+x5wxm/r3FOiJDXdlAgFlytzqgcyeZMJVKKBQHyJ\njEGg/1720A0numuOCt71w/2G0bDmijuj1e6tH32MwRWcvRNZ19K9ssyDz2S9p68s\nYDhIxX69OWxwScTIHLY6J2t8txf/XMivL/636fPlDADvBEVTdlT606n8CcKUVQeq\npUVdG+lfAgMBAAECggEAP38SUA7B69eTfRpo658ycOs3Amr0JW4H/bb1rNeAul0K\nZhwd/HnU4E07y81xQmey5kN5ZeNrD5EvqkZvSyMJHV0EEahZStwhjCfnDB/cxyix\nZ+kFhv4y9eK+kFpUAhBy5nX6T0O+2T6WvzAwbmbVsZ+X8kJyPuF9m8ldcPlD0sce\ntj8NwVq1ys52eosqs7zi2vjt+eMcaY393l4ls+vNq8Yf27cfyFw45W45CH/97/Nu\n5AmuzlCOAfFF+z4OC5g4rei4E/Qgpxa7/uom+BVfv9G0DIGW/tU6Sne0+37uoGKt\nW6DzhgtebUtoYkG7ZJ05BTXGp2lwgVcNRoPwnKJDxQKBgQDT5wYPUBDW+FHbvZSp\nd1m1UQuXyerqOTA9smFaM8sr/UraeH85DJPEIEk8qsntMBVMhvD3Pw8uIUeFNMYj\naLmZFObsL+WctepXrVo5NB6RtLB/jZYxiKMatMLUJIYtcKIp+2z/YtKiWcLnwotB\nWdCjVnPTxpkurmF2fWP/eewZ+wKBgQDRMtJg7etjvKyjYNQ5fARnCc+XsI3gkBe1\nX9oeXfhyfZFeBXWnZzN1ITgFHplDznmBdxAyYGiQdbbkdKQSghviUQ0igBvoDMYy\n1rWcy+a17Mj98uyNEfmb3X2cC6WpvOZaGHwg9+GY67BThwI3FqHIbyk6Ko09WlTX\nQpRQjMzU7QKBgAfi1iflu+q0LR+3a3vvFCiaToskmZiD7latd9AKk2ocsBd3Woy9\n+hXXecJHPOKV4oUJlJgvAZqe5HGBqEoTEK0wyPNLSQlO/9ypd+0fEnArwFHO7CMF\nycQprAKHJXM1eOOFFuZeQCaInqdPZy1UcV5Szla4UmUZWkk1m24blHzXAoGBAMcA\nyH4qdbxX9AYrC1dvsSRvgcnzytMvX05LU0uF6tzGtG0zVlub4ahvpEHCfNuy44UT\nxRWW/oFFaWjjyFxO5sWggpUqNuHEnRopg3QXx22SRRTGbN45li/+QAocTkgsiRh1\nqEcYZsO4mPCsQqAy6E2p6RcK+Xa+omxvSnVhq0x1AoGAKr8GdkCl4CF6rieLMAQ7\nLNBuuoYGaHoh8l5E2uOQpzwxVy/nMBcAv+2+KqHEzHryUv1owOi6pMLv7A9mTFoS\n18B0QRLuz5fSOsVnmldfC9fpUc6H8cH1SINZpzajqQA74bPwELJjnzrCnH79TnHG\nJuElxA33rFEjbgbzdyrE768=\n-----END PRIVATE KEY-----\n",
"client_email": "gspread-connection@sheets-api-connect-378620.iam.gserviceaccount.com",
"client_id": "106625872877651920064",
"auth_uri": "https://accounts.google.com/o/oauth2/auth",
"token_uri": "https://oauth2.googleapis.com/token",
"auth_provider_x509_cert_url": "https://www.googleapis.com/oauth2/v1/certs",
"client_x509_cert_url": "https://www.googleapis.com/robot/v1/metadata/x509/gspread-connection%40sheets-api-connect-378620.iam.gserviceaccount.com"
}
uri = st.secrets['mongo_uri']
client = pymongo.MongoClient(uri, retryWrites=True, serverSelectionTimeoutMS=500000)
db = client["NBA_DFS"]
NBA_Data = st.secrets['NBA_Data']
gc = gspread.service_account_from_dict(credentials)
gc2 = gspread.service_account_from_dict(credentials2)
return gc, gc2, db, NBA_Data
gcservice_account, gcservice_account2, db, NBA_Data = init_conn()
dk_columns = ['PG', 'SG', 'SF', 'PF', 'C', 'G', 'F', 'FLEX', 'salary', 'proj', 'Team', 'Team_count', 'Secondary', 'Secondary_count', 'Own']
fd_columns = ['PG1', 'PG2', 'SG1', 'SG2', 'SF1', 'SF2', 'PF1', 'PF2', 'C1', 'salary', 'proj', 'Team', 'Team_count', 'Secondary', 'Secondary_count', 'Own']
roo_format = {'Top_finish': '{:.2%}', 'Top_5_finish': '{:.2%}', 'Top_10_finish': '{:.2%}', '20+%': '{:.2%}', '4x%': '{:.2%}', '5x%': '{:.2%}', '6x%': '{:.2%}', 'GPP%': '{:.2%}'}
st.markdown("""
<style>
/* Tab styling */
.stTabs [data-baseweb="tab-list"] {
gap: 8px;
padding: 4px;
}
.stTabs [data-baseweb="tab"] {
height: 50px;
white-space: pre-wrap;
background-color: #DAA520;
color: white;
border-radius: 10px;
gap: 1px;
padding: 10px 20px;
font-weight: bold;
transition: all 0.3s ease;
}
.stTabs [aria-selected="true"] {
background-color: #DAA520;
border: 3px solid #FFD700;
color: white;
}
.stTabs [data-baseweb="tab"]:hover {
background-color: #FFD700;
cursor: pointer;
}
</style>""", unsafe_allow_html=True)
@st.cache_data(ttl=60)
def load_overall_stats():
collection = db["DK_Player_Stats"]
cursor = collection.find()
raw_display = pd.DataFrame(list(cursor))
raw_display = raw_display[['Name', 'Salary', 'Position', 'Team', 'Opp', 'Minutes', 'FGM', 'FGA', 'FG2M', 'FG2A', 'Threes', 'FG3A', 'FTM', 'FTA', 'TRB', 'AST', 'STL', 'BLK', 'TOV', '2P', '3P', 'FT',
'Points', 'Rebounds', 'Assists', 'PRA', 'PR', 'PA', 'RA', 'Steals', 'Blocks', 'Turnovers', 'Fantasy', 'Raw', 'Own']]
raw_display = raw_display.rename(columns={"Name": "Player", "Nickname": "Player", "Fantasy": "Median"})
raw_display = raw_display.loc[raw_display['Median'] > 0]
raw_display = raw_display.apply(pd.to_numeric, errors='ignore')
dk_raw = raw_display.sort_values(by='Median', ascending=False)
collection = db["FD_Player_Stats"]
cursor = collection.find()
raw_display = pd.DataFrame(list(cursor))
raw_display = raw_display[['Nickname', 'Salary', 'Position', 'Team', 'Opp', 'Minutes', 'FGM', 'FGA', 'FG2M', 'FG2A', 'Threes', 'FG3A', 'FTM', 'FTA', 'TRB', 'AST', 'STL', 'BLK', 'TOV', '2P', '3P', 'FT',
'Points', 'Rebounds', 'Assists', 'PRA', 'PR', 'PA', 'RA', 'Steals', 'Blocks', 'Turnovers', 'Fantasy', 'Raw', 'Own']]
raw_display = raw_display.rename(columns={"Name": "Player", "Nickname": "Player", "Fantasy": "Median"})
raw_display = raw_display.loc[raw_display['Median'] > 0]
raw_display = raw_display.apply(pd.to_numeric, errors='ignore')
fd_raw = raw_display.sort_values(by='Median', ascending=False)
collection = db["Secondary_DK_Player_Stats"]
cursor = collection.find()
raw_display = pd.DataFrame(list(cursor))
raw_display = raw_display[['Name', 'Salary', 'Position', 'Team', 'Opp', 'Minutes', 'FGM', 'FGA', 'FG2M', 'FG2A', 'Threes', 'FG3A', 'FTM', 'FTA', 'TRB', 'AST', 'STL', 'BLK', 'TOV', '2P', '3P', 'FT',
'Points', 'Rebounds', 'Assists', 'PRA', 'PR', 'PA', 'RA', 'Steals', 'Blocks', 'Turnovers', 'Fantasy', 'Raw', 'Own']]
raw_display = raw_display.rename(columns={"Name": "Player", "Nickname": "Player", "Fantasy": "Median"})
raw_display = raw_display.loc[raw_display['Median'] > 0]
raw_display = raw_display.apply(pd.to_numeric, errors='ignore')
dk_raw_sec = raw_display.sort_values(by='Median', ascending=False)
collection = db["Secondary_FD_Player_Stats"]
cursor = collection.find()
raw_display = pd.DataFrame(list(cursor))
raw_display = raw_display[['Nickname', 'Salary', 'Position', 'Team', 'Opp', 'Minutes', 'FGM', 'FGA', 'FG2M', 'FG2A', 'Threes', 'FG3A', 'FTM', 'FTA', 'TRB', 'AST', 'STL', 'BLK', 'TOV', '2P', '3P', 'FT',
'Points', 'Rebounds', 'Assists', 'PRA', 'PR', 'PA', 'RA', 'Steals', 'Blocks', 'Turnovers', 'Fantasy', 'Raw', 'Own']]
raw_display = raw_display.rename(columns={"Name": "Player", "Nickname": "Player", "Fantasy": "Median"})
raw_display = raw_display.loc[raw_display['Median'] > 0]
raw_display = raw_display.apply(pd.to_numeric, errors='ignore')
fd_raw_sec = raw_display.sort_values(by='Median', ascending=False)
collection = db["Player_Range_Of_Outcomes"]
cursor = collection.find()
raw_display = pd.DataFrame(list(cursor))
raw_display = raw_display[['Player', 'Minutes Proj', 'Position', 'Team', 'Opp', 'Salary', 'Floor', 'Median', 'Ceiling', 'Top_finish', 'Top_5_finish', 'Top_10_finish', '20+%', '4x%', '5x%', '6x%', 'GPP%',
'Own', 'Small_Own', 'Large_Own', 'Cash_Own', 'CPT_Own', 'LevX', 'ValX', 'site', 'version', 'slate', 'timestamp', 'player_ID']]
raw_display = raw_display.loc[raw_display['Median'] > 0]
raw_display = raw_display.apply(pd.to_numeric, errors='ignore')
roo_raw = raw_display.sort_values(by='Median', ascending=False)
timestamp = raw_display['timestamp'].values[0]
collection = db["Range_Of_Outcomes_Backlog"]
cursor = collection.find()
raw_display = pd.DataFrame(list(cursor))
raw_display = raw_display[['Player', 'Minutes Proj', 'Position', 'Team', 'Opp', 'Salary', 'Floor', 'Median', 'Ceiling', 'Top_finish', 'Top_5_finish', 'Top_10_finish', '20+%', '4x%', '5x%', '6x%', 'GPP%',
'Own', 'Small_Own', 'Large_Own', 'Cash_Own', 'CPT_Own', 'LevX', 'ValX', 'site', 'version', 'slate', 'timestamp', 'Date']]
roo_backlog = raw_display.sort_values(by='Date', ascending=False)
roo_backlog = roo_backlog[roo_backlog['slate'] == 'Main Slate']
return dk_raw, fd_raw, dk_raw_sec, fd_raw_sec, roo_raw, timestamp, roo_backlog
@st.cache_data(ttl = 60)
def init_DK_lineups():
collection = db['DK_NBA_name_map']
cursor = collection.find()
raw_data = pd.DataFrame(list(cursor))
names_dict = dict(zip(raw_data['key'], raw_data['value']))
collection = db["DK_NBA_seed_frame"]
cursor = collection.find().limit(10000)
raw_display = pd.DataFrame(list(cursor))
raw_display = raw_display[['PG', 'SG', 'SF', 'PF', 'C', 'G', 'F', 'FLEX', 'salary', 'proj', 'Team', 'Team_count', 'Secondary', 'Secondary_count', 'Own']]
dict_columns = ['PG', 'SG', 'SF', 'PF', 'C', 'G', 'F', 'FLEX']
for col in dict_columns:
raw_display[col] = raw_display[col].map(names_dict)
DK_seed = raw_display.to_numpy()
return DK_seed
@st.cache_data(ttl = 60)
def init_FD_lineups():
collection = db['FD_NBA_name_map']
cursor = collection.find()
raw_data = pd.DataFrame(list(cursor))
names_dict = dict(zip(raw_data['key'], raw_data['value']))
collection = db["FD_NBA_seed_frame"]
cursor = collection.find().limit(10000)
raw_display = pd.DataFrame(list(cursor))
raw_display = raw_display[['PG1', 'PG2', 'SG1', 'SG2', 'SF1', 'SF2', 'PF1', 'PF2', 'C1', 'salary', 'proj', 'Team', 'Team_count', 'Secondary', 'Secondary_count', 'Own']]
dict_columns = ['PG1', 'PG2', 'SG1', 'SG2', 'SF1', 'SF2', 'PF1', 'PF2', 'C1']
for col in dict_columns:
raw_display[col] = raw_display[col].map(names_dict)
FD_seed = raw_display.to_numpy()
return FD_seed
def convert_df_to_csv(df):
return df.to_csv().encode('utf-8')
@st.cache_data
def convert_df(array):
array = pd.DataFrame(array, columns=column_names)
return array.to_csv().encode('utf-8')
dk_raw, fd_raw, dk_raw_sec, fd_raw_sec, roo_raw, timestamp, roo_backlog = load_overall_stats()
salary_dict = dict(zip(roo_raw.Player, roo_raw.Salary))
try:
dk_lineups = init_DK_lineups()
fd_lineups = init_FD_lineups()
except:
dk_lineups = pd.DataFrame(columns=dk_columns)
fd_lineups = pd.DataFrame(columns=fd_columns)
t_stamp = f"Last Update: " + str(timestamp) + f" CST"
tab1, tab2 = st.tabs(['Range of Outcomes', 'Optimals'])
with st.sidebar:
st.header("Quick Builder")
st.info("This is a quick hand building helper to give you some basic info about player combos and lineup feasibility")
sidebar_site = st.selectbox("What site are you running?", ('Draftkings', 'Fanduel'), key='sidebar_site')
sidebar_slate = st.selectbox("What slate are you running?", ('Main Slate', 'Secondary Slate'), key='sidebar_slate')
if sidebar_site == 'Draftkings':
roo_sample = roo_raw[roo_raw['slate'] == str(sidebar_slate)]
roo_sample = roo_sample[roo_sample['site'] == 'Draftkings']
roo_sample = roo_sample.sort_values(by='Own', ascending=False)
selected_pg = []
selected_sg = []
selected_sf = []
selected_pf = []
selected_c = []
selected_g = []
selected_f = []
selected_flex = []
elif sidebar_site == 'Fanduel':
roo_sample = roo_raw[roo_raw['slate'] == str(sidebar_slate)]
roo_sample = roo_sample[roo_sample['site'] == 'Fanduel']
roo_sample = roo_sample.sort_values(by='Own', ascending=False)
selected_pg1 = []
selected_pg2 = []
selected_sg1 = []
selected_sg2 = []
selected_sf1 = []
selected_sf2 = []
selected_pf1 = []
selected_pf2 = []
selected_c1 = []
# Get unique players by position from dk_roo_raw
pgs = roo_sample[roo_sample['Position'].str.contains('PG')]['Player'].unique()
sgs = roo_sample[roo_sample['Position'].str.contains('SG')]['Player'].unique()
sfs = roo_sample[roo_sample['Position'].str.contains('SF')]['Player'].unique()
pfs = roo_sample[roo_sample['Position'].str.contains('PF')]['Player'].unique()
centers = roo_sample[roo_sample['Position'].str.contains('C')]['Player'].unique()
guards = roo_sample[roo_sample['Position'].str.contains('G')]['Player'].unique()
forwards = roo_sample[roo_sample['Position'].str.contains('F')]['Player'].unique()
flex = roo_sample['Player'].unique()
if sidebar_site == 'Draftkings':
selected_pgs = st.multiselect('Select PG:', list(pgs), default=None, placeholder='Select PG', label_visibility='collapsed', key='pg1')
selected_sgs = st.multiselect('Select SG:', list(sgs), default=None, placeholder='Select SG', label_visibility='collapsed', key='sg1')
selected_sfs = st.multiselect('Select SF:', list(sfs), default=None, placeholder='Select SF', label_visibility='collapsed', key='sf1')
selected_pfs = st.multiselect('Select PF:', list(pfs), default=None, placeholder='Select PF', label_visibility='collapsed', key='pf1')
selected_cs = st.multiselect('Select C:', list(centers), default=None, placeholder='Select C', label_visibility='collapsed', key='c1')
selected_g = st.multiselect('Select G:', list(guards), default=None, placeholder='Select G', label_visibility='collapsed', key='g')
selected_f = st.multiselect('Select F:', list(forwards), default=None, placeholder='Select F', label_visibility='collapsed', key='f')
selected_flex = st.multiselect('Select Flex:', list(flex), default=None, placeholder='Select Flex', label_visibility='collapsed', key='flex')
# Combine all selected players
all_selected = selected_pgs + selected_sgs + selected_sfs + selected_pfs + selected_cs + selected_g + selected_f + selected_flex
elif sidebar_site == 'Fanduel':
selected_pg1 = st.multiselect('Select PG1:', list(pgs), default=None, placeholder='Select PG1', label_visibility='collapsed', key='pg1')
selected_pg2 = st.multiselect('Select PG2:', list(pgs), default=None, placeholder='Select PG2', label_visibility='collapsed', key='pg2')
selected_sg1 = st.multiselect('Select SG1:', list(sgs), default=None, placeholder='Select SG1', label_visibility='collapsed', key='sg1')
selected_sg2 = st.multiselect('Select SG2:', list(sgs), default=None, placeholder='Select SG2', label_visibility='collapsed', key='sg2')
selected_sf1 = st.multiselect('Select SF1:', list(sfs), default=None, placeholder='Select SF1', label_visibility='collapsed', key='sf1')
selected_sf2 = st.multiselect('Select SF2:', list(sfs), default=None, placeholder='Select SF2', label_visibility='collapsed', key='sf2')
selected_pf1 = st.multiselect('Select PF1:', list(pfs), default=None, placeholder='Select PF1', label_visibility='collapsed', key='pf1')
selected_pf2 = st.multiselect('Select PF2:', list(pfs), default=None, placeholder='Select PF2', label_visibility='collapsed', key='pf2')
selected_c1 = st.multiselect('Select C1:', list(centers), default=None, placeholder='Select C1', label_visibility='collapsed', key='c1')
# Combine all selected players
all_selected = selected_pg1 + selected_pg2 + selected_sg1 + selected_sg2 + selected_sf1 + selected_sf2 + selected_pf1 + selected_pf2 + selected_c1
if all_selected:
# Get stats for selected players
selected_stats = roo_sample[roo_sample['Player'].isin(all_selected)]
# Calculate sums
salary_sum = selected_stats['Salary'].sum()
median_sum = selected_stats['Median'].sum()
own_sum = selected_stats['Own'].sum()
levx_sum = selected_stats['LevX'].sum()
# Display sums
st.write('---')
if sidebar_site == 'Draftkings':
if salary_sum > 50000:
st.warning(f'Total Salary: ${salary_sum:.2f} exceeds limit of $50,000')
else:
st.write(f'Total Salary: ${salary_sum:.2f}')
elif sidebar_site == 'Fanduel':
if salary_sum > 60000:
st.warning(f'Total Salary: ${salary_sum:.2f} exceeds limit of $60,000')
else:
st.write(f'Total Salary: ${salary_sum:.2f}')
st.write(f'Total Median: {median_sum:.2f}')
st.write(f'Total Ownership: {own_sum:.2f}%')
st.write(f'Total LevX: {levx_sum:.2f}')
with tab1:
with st.expander("Info and Filters"):
with st.container():
st.info("Advanced view includes all stats and thresholds, simple includes just basic columns for ease of use on mobile")
with st.container():
# First row - timestamp and reset button
col1, col2 = st.columns([3, 1])
with col1:
st.info(t_stamp)
with col2:
if st.button("Load/Reset Data", key='reset1'):
st.cache_data.clear()
dk_raw, fd_raw, dk_raw_sec, fd_raw_sec, roo_raw, timestamp, roo_backlog = load_overall_stats()
id_dict = dict(zip(roo_raw.Player, roo_raw.player_ID))
dk_lineups = init_DK_lineups()
fd_lineups = init_FD_lineups()
t_stamp = f"Last Update: " + str(timestamp) + f" CST"
for key in st.session_state.keys():
del st.session_state[key]
col1, col2, col3, col4 = st.columns(4)
with col1:
view_var2 = st.radio("View Type", ('Simple', 'Advanced'), key='view_var2')
with col2:
site_var2 = st.radio("Site", ('Draftkings', 'Fanduel'), key='site_var2')
# Process site selection
if site_var2 == 'Draftkings':
site_baselines = roo_raw[roo_raw['site'] == 'Draftkings']
site_backlog = roo_backlog[roo_backlog['site'] == 'Draftkings']
elif site_var2 == 'Fanduel':
site_baselines = roo_raw[roo_raw['site'] == 'Fanduel']
site_backlog = roo_backlog[roo_backlog['site'] == 'Fanduel']
with col3:
slate_split = st.radio("Slate Type", ('Main Slate', 'Secondary', 'Backlog'), key='slate_split')
if slate_split == 'Main Slate':
raw_baselines = site_baselines[site_baselines['slate'] == 'Main Slate']
elif slate_split == 'Secondary':
raw_baselines = site_baselines[site_baselines['slate'] == 'Secondary Slate']
elif slate_split == 'Backlog':
raw_baselines = site_backlog
# Third row - backlog options
col1, col2 = st.columns(2)
with col1:
view_all = st.checkbox("View all dates?", key='view_all')
with col2:
if not view_all:
date_var2 = st.date_input("Select date", key='date_var2')
if view_all:
raw_baselines = raw_baselines.sort_values(by=['Median', 'Date'], ascending=[False, False])
else:
raw_baselines = raw_baselines[raw_baselines['Date'] == date_var2.strftime('%m-%d-%Y')]
raw_baselines = raw_baselines.sort_values(by='Median', ascending=False)
with col4:
split_var2 = st.radio("Slate Range", ('Full Slate Run', 'Specific Games'), key='split_var2')
if split_var2 == 'Specific Games':
team_var2 = st.multiselect('Select teams for ROO', options=raw_baselines['Team'].unique(), key='team_var2')
else:
team_var2 = raw_baselines.Team.values.tolist()
pos_var2 = st.selectbox('Position Filter', options=['All', 'PG', 'SG', 'SF', 'PF', 'C'], key='pos_var2')
col1, col2 = st.columns(2)
with col1:
low_salary = st.number_input('Enter Lowest Salary', min_value=3000, max_value=15000, value=3000, step=100, key='low_salary')
with col2:
high_salary = st.number_input('Enter Highest Salary', min_value=3000, max_value=15000, value=15000, step=100, key='high_salary')
display_container_1 = st.empty()
display_dl_container_1 = st.empty()
display_proj = raw_baselines[raw_baselines['Team'].isin(team_var2)]
display_proj = display_proj[display_proj['Salary'].between(low_salary, high_salary)]
if view_var2 == 'Advanced':
display_proj = display_proj[['Player', 'Minutes Proj', 'Position', 'Team', 'Opp', 'Salary', 'Floor', 'Median', 'Ceiling', 'Top_finish', 'Top_5_finish', 'Top_10_finish', '20+%', '4x%', '5x%', '6x%', 'GPP%',
'Own', 'Small_Own', 'Large_Own', 'Cash_Own', 'CPT_Own', 'LevX', 'ValX']]
elif view_var2 == 'Simple':
display_proj = display_proj[['Player', 'Position', 'Salary', 'Median', 'GPP%', 'Own']]
export_data = display_proj.copy()
# display_proj = display_proj.set_index('Player')
st.session_state.display_proj = display_proj
with display_container_1:
display_container = st.empty()
if 'display_proj' in st.session_state:
if pos_var2 == 'All':
st.session_state.display_proj = st.session_state.display_proj
elif pos_var2 != 'All':
st.session_state.display_proj = st.session_state.display_proj[st.session_state.display_proj['Position'].str.contains(pos_var2)]
st.dataframe(st.session_state.display_proj.style.set_properties(**{'font-size': '6pt'}).background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(roo_format, precision=2), height=1000, use_container_width = True, hide_index=True)
with display_dl_container_1:
display_dl_container = st.empty()
if 'display_proj' in st.session_state:
st.download_button(
label="Export Tables",
data=convert_df_to_csv(export_data),
file_name='NBA_ROO_export.csv',
mime='text/csv',
)
with tab2:
with st.expander("Info and Filters"):
if st.button("Load/Reset Data", key='reset2'):
st.cache_data.clear()
dk_raw, fd_raw, dk_raw_sec, fd_raw_sec, roo_raw, timestamp, roo_backlog = load_overall_stats()
dk_lineups = init_DK_lineups()
fd_lineups = init_FD_lineups()
t_stamp = f"Last Update: " + str(timestamp) + f" CST"
for key in st.session_state.keys():
del st.session_state[key]
col1, col2, col3, col4, col5 = st.columns(5)
with col1:
slate_var1 = st.radio("Which data are you loading?", ('Main Slate', 'Just the Main Slate'))
with col2:
site_var1 = st.radio("What site are you working with?", ('Draftkings', 'Fanduel'))
with col3:
lineup_num_var = st.number_input("How many lineups do you want to display?", min_value=1, max_value=1000, value=150, step=1)
with col4:
if site_var1 == 'Draftkings':
raw_baselines = dk_raw
ROO_slice = roo_raw[roo_raw['site'] == 'Draftkings']
id_dict = dict(zip(ROO_slice.Player, ROO_slice.player_ID))
# Get the minimum and maximum ownership values from dk_lineups
min_own = np.min(dk_lineups[:,14])
max_own = np.max(dk_lineups[:,14])
column_names = dk_columns
player_var1 = st.radio("Do you want a frame with specific Players?", ('Full Slate', 'Specific Players'), key='player_var1')
if player_var1 == 'Specific Players':
player_var2 = st.multiselect('Which players do you want?', options = dk_raw['Player'].unique())
elif player_var1 == 'Full Slate':
player_var2 = dk_raw.Player.values.tolist()
elif site_var1 == 'Fanduel':
raw_baselines = fd_raw
ROO_slice = roo_raw[roo_raw['site'] == 'Fanduel']
id_dict = dict(zip(ROO_slice.Player, ROO_slice.player_ID))
min_own = np.min(fd_lineups[:,15])
max_own = np.max(fd_lineups[:,15])
column_names = fd_columns
player_var1 = st.radio("Do you want a frame with specific Players?", ('Full Slate', 'Specific Players'), key='player_var1')
if player_var1 == 'Specific Players':
player_var2 = st.multiselect('Which players do you want?', options = fd_raw['Player'].unique())
elif player_var1 == 'Full Slate':
player_var2 = fd_raw.Player.values.tolist()
with col5:
if st.button("Prepare data export", key='data_export'):
data_export = st.session_state.working_seed.copy()
if site_var1 == 'Draftkings':
for col_idx in range(8):
data_export[:, col_idx] = np.array([id_dict.get(player, player) for player in data_export[:, col_idx]])
elif site_var1 == 'Fanduel':
for col_idx in range(9):
data_export[:, col_idx] = np.array([id_dict.get(player, player) for player in data_export[:, col_idx]])
st.download_button(
label="Export optimals set",
data=convert_df(data_export),
file_name='NBA_optimals_export.csv',
mime='text/csv',
)
if site_var1 == 'Draftkings':
if 'working_seed' in st.session_state:
st.session_state.working_seed = st.session_state.working_seed
if player_var1 == 'Specific Players':
st.session_state.working_seed = st.session_state.working_seed[np.equal.outer(st.session_state.working_seed, player_var2).any(axis=1).all(axis=1)]
elif player_var1 == 'Full Slate':
st.session_state.working_seed = dk_lineups.copy()
st.session_state.data_export_display = pd.DataFrame(st.session_state.working_seed[0:lineup_num_var], columns=column_names)
elif 'working_seed' not in st.session_state:
st.session_state.working_seed = dk_lineups.copy()
st.session_state.working_seed = st.session_state.working_seed
if player_var1 == 'Specific Players':
st.session_state.working_seed = st.session_state.working_seed[np.equal.outer(st.session_state.working_seed, player_var2).any(axis=1).all(axis=1)]
elif player_var1 == 'Full Slate':
st.session_state.working_seed = dk_lineups.copy()
st.session_state.data_export_display = pd.DataFrame(st.session_state.working_seed[0:lineup_num_var], columns=column_names)
elif site_var1 == 'Fanduel':
if 'working_seed' in st.session_state:
st.session_state.working_seed = st.session_state.working_seed
if player_var1 == 'Specific Players':
st.session_state.working_seed = st.session_state.working_seed[np.equal.outer(st.session_state.working_seed, player_var2).any(axis=1).all(axis=1)]
elif player_var1 == 'Full Slate':
st.session_state.working_seed = fd_lineups.copy()
st.session_state.data_export_display = pd.DataFrame(st.session_state.working_seed[0:lineup_num_var], columns=column_names)
elif 'working_seed' not in st.session_state:
st.session_state.working_seed = fd_lineups.copy()
st.session_state.working_seed = st.session_state.working_seed
if player_var1 == 'Specific Players':
st.session_state.working_seed = st.session_state.working_seed[np.equal.outer(st.session_state.working_seed, player_var2).any(axis=1).all(axis=1)]
elif player_var1 == 'Full Slate':
st.session_state.working_seed = fd_lineups.copy()
st.session_state.data_export_display = pd.DataFrame(st.session_state.working_seed[0:lineup_num_var], columns=column_names)
export_file = st.session_state.data_export_display.copy()
if site_var1 == 'Draftkings':
for col_idx in range(8):
export_file.iloc[:, col_idx] = export_file.iloc[:, col_idx].map(id_dict)
elif site_var1 == 'Fanduel':
for col_idx in range(9):
export_file.iloc[:, col_idx] = export_file.iloc[:, col_idx].map(id_dict)
with st.container():
if st.button("Reset Optimals", key='reset3'):
for key in st.session_state.keys():
del st.session_state[key]
if site_var1 == 'Draftkings':
st.session_state.working_seed = dk_lineups.copy()
elif site_var1 == 'Fanduel':
st.session_state.working_seed = fd_lineups.copy()
if 'data_export_display' in st.session_state:
st.dataframe(st.session_state.data_export_display.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(precision=2), height=500, use_container_width = True)
st.download_button(
label="Export display optimals",
data=convert_df(export_file),
file_name='NBA_display_optimals.csv',
mime='text/csv',
)
with st.container():
if 'working_seed' in st.session_state:
# Create a new dataframe with summary statistics
if site_var1 == 'Draftkings':
summary_df = pd.DataFrame({
'Metric': ['Min', 'Average', 'Max', 'STDdev'],
'Salary': [
np.min(st.session_state.working_seed[:,8]),
np.mean(st.session_state.working_seed[:,8]),
np.max(st.session_state.working_seed[:,8]),
np.std(st.session_state.working_seed[:,8])
],
'Proj': [
np.min(st.session_state.working_seed[:,9]),
np.mean(st.session_state.working_seed[:,9]),
np.max(st.session_state.working_seed[:,9]),
np.std(st.session_state.working_seed[:,9])
],
'Own': [
np.min(st.session_state.working_seed[:,14]),
np.mean(st.session_state.working_seed[:,14]),
np.max(st.session_state.working_seed[:,14]),
np.std(st.session_state.working_seed[:,14])
]
})
elif site_var1 == 'Fanduel':
summary_df = pd.DataFrame({
'Metric': ['Min', 'Average', 'Max', 'STDdev'],
'Salary': [
np.min(st.session_state.working_seed[:,9]),
np.mean(st.session_state.working_seed[:,9]),
np.max(st.session_state.working_seed[:,9]),
np.std(st.session_state.working_seed[:,9])
],
'Proj': [
np.min(st.session_state.working_seed[:,10]),
np.mean(st.session_state.working_seed[:,10]),
np.max(st.session_state.working_seed[:,10]),
np.std(st.session_state.working_seed[:,10])
],
'Own': [
np.min(st.session_state.working_seed[:,15]),
np.mean(st.session_state.working_seed[:,15]),
np.max(st.session_state.working_seed[:,15]),
np.std(st.session_state.working_seed[:,15])
]
})
# Set the index of the summary dataframe as the "Metric" column
summary_df = summary_df.set_index('Metric')
# Display the summary dataframe
st.subheader("Optimal Statistics")
st.dataframe(summary_df.style.format({
'Salary': '{:.2f}',
'Proj': '{:.2f}',
'Own': '{:.2f}'
}).background_gradient(cmap='RdYlGn', axis=0, subset=['Salary', 'Proj', 'Own']), use_container_width=True)
with st.container():
tab1, tab2 = st.tabs(["Display Frequency", "Seed Frame Frequency"])
with tab1:
if 'data_export_display' in st.session_state:
if site_var1 == 'Draftkings':
player_columns = st.session_state.data_export_display.iloc[:, :8]
elif site_var1 == 'Fanduel':
player_columns = st.session_state.data_export_display.iloc[:, :9]
# Flatten the DataFrame and count unique values
value_counts = player_columns.values.flatten().tolist()
value_counts = pd.Series(value_counts).value_counts()
percentages = (value_counts / lineup_num_var * 100).round(2)
# Create a DataFrame with the results
summary_df = pd.DataFrame({
'Player': value_counts.index,
'Salary': [salary_dict.get(player, player) for player in value_counts.index],
'Frequency': value_counts.values,
'Percentage': percentages.values
})
# Sort by frequency in descending order
summary_df = summary_df.sort_values('Frequency', ascending=False)
# Display the table
st.write("Player Frequency Table:")
st.dataframe(summary_df.style.format({'Percentage': '{:.2f}%'}, precision=2), height=500, use_container_width=True)
st.download_button(
label="Export player frequency",
data=convert_df_to_csv(summary_df),
file_name='NBA_player_frequency.csv',
mime='text/csv',
)
with tab2:
if 'working_seed' in st.session_state:
if site_var1 == 'Draftkings':
player_columns = st.session_state.working_seed[:, :8]
elif site_var1 == 'Fanduel':
player_columns = st.session_state.working_seed[:, :9]
# Flatten the DataFrame and count unique values
value_counts = player_columns.flatten().tolist()
value_counts = pd.Series(value_counts).value_counts()
percentages = (value_counts / len(st.session_state.working_seed) * 100).round(2)
# Create a DataFrame with the results
summary_df = pd.DataFrame({
'Player': value_counts.index,
'Salary': [salary_dict.get(player, player) for player in value_counts.index],
'Frequency': value_counts.values,
'Percentage': percentages.values
})
# Sort by frequency in descending order
summary_df = summary_df.sort_values('Frequency', ascending=False)
# Display the table
st.write("Seed Frame Frequency Table:")
st.dataframe(summary_df.style.format({'Percentage': '{:.2f}%'}, precision=2), height=500, use_container_width=True)
st.download_button(
label="Export seed frame frequency",
data=convert_df_to_csv(summary_df),
file_name='NBA_seed_frame_frequency.csv',
mime='text/csv',
)
|