File size: 39,177 Bytes
4036c64
6ef6fac
 
 
 
6a6dae7
 
 
6ef6fac
4036c64
 
6a6dae7
4036c64
6a6dae7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b647ce4
 
 
 
6a6dae7
 
4036c64
6a6dae7
 
6ef6fac
b647ce4
6a6dae7
b647ce4
 
 
 
6ef6fac
9990caa
5ae652c
96799c9
 
 
 
 
 
 
 
 
 
 
3dbcf03
96799c9
 
 
 
 
 
 
 
 
 
3dbcf03
96799c9
 
 
 
3dbcf03
96799c9
 
 
 
ff22721
4036c64
f4dd7c9
 
 
 
 
 
 
6ef6fac
 
4036c64
 
f4dd7c9
 
 
 
0077aa4
f4dd7c9
 
6ef6fac
 
4036c64
5b35c1a
f4dd7c9
 
 
 
 
 
 
765743d
 
 
 
f4dd7c9
 
 
 
0077aa4
f4dd7c9
 
765743d
 
 
6a6dae7
f4dd7c9
 
 
 
277c307
d617731
5b35c1a
 
 
6ef6fac
53152e8
6887e0b
f4dd7c9
 
 
 
1bbf3e4
f4dd7c9
fb9a054
49a570a
02183a0
 
6ef6fac
ff22721
b647ce4
a67075a
 
 
 
 
b647ce4
 
02183a0
b647ce4
 
 
a67075a
 
 
02183a0
b647ce4
 
 
ff22721
b647ce4
a67075a
 
 
 
 
b647ce4
 
02183a0
b647ce4
 
 
a67075a
 
 
02183a0
b647ce4
 
 
6ef6fac
 
 
b647ce4
 
 
 
 
02183a0
3d72ea9
d617731
e3896eb
 
 
 
 
 
6887e0b
767e1e6
3fdce20
6ef6fac
34ce6c5
 
0e8dd68
34ce6c5
 
 
 
de9b810
 
34ce6c5
 
 
 
 
 
 
 
 
 
de9b810
 
34ce6c5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0e8dd68
 
 
 
 
 
 
de9b810
34ce6c5
 
 
 
 
0e8dd68
 
 
 
 
 
 
 
 
34ce6c5
 
 
 
 
 
 
 
 
de9b810
 
 
 
34ce6c5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
767e1e6
20f53c3
dc913ed
20f53c3
 
 
 
 
96799c9
20f53c3
96799c9
20f53c3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2930962
20f53c3
 
 
 
 
 
 
 
 
96799c9
20f53c3
 
 
 
 
 
ac9b445
 
 
 
3f36e0d
ac9b445
 
 
 
822a6cd
ac9b445
 
 
83d45be
ac9b445
25d03a1
ac9b445
 
 
 
 
 
 
83d45be
ac9b445
 
 
 
 
 
 
 
 
 
25d03a1
53152e8
dc913ed
 
 
 
 
 
 
 
 
 
66b0ac2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3d97c49
66b0ac2
 
 
48ec8ac
66b0ac2
b647ce4
66b0ac2
 
 
 
 
48ec8ac
66b0ac2
b647ce4
a819472
66b0ac2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a819472
66b0ac2
 
 
 
 
 
 
a819472
66b0ac2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
25e92b8
66b0ac2
25e92b8
66b0ac2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5f2bcd1
1d2b4b5
66b0ac2
1d2b4b5
66b0ac2
4336d9e
66b0ac2
 
 
4336d9e
66b0ac2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
import streamlit as st
import numpy as np
import pandas as pd
import streamlit as st
import gspread
import pymongo

st.set_page_config(layout="wide")

@st.cache_resource
def init_conn():
        scope = ['https://spreadsheets.google.com/feeds', 'https://www.googleapis.com/auth/drive']

        credentials = {
          "type": "service_account",
          "project_id": "model-sheets-connect",
          "private_key_id": st.secrets['model_sheets_connect_pk'],
          "private_key": "-----BEGIN PRIVATE KEY-----\nMIIEvgIBADANBgkqhkiG9w0BAQEFAASCBKgwggSkAgEAAoIBAQDiu1v/e6KBKOcK\ncx0KQ23nZK3ZVvADYy8u/RUn/EDI82QKxTd/DizRLIV81JiNQxDJXSzgkbwKYEDm\n48E8zGvupU8+Nk76xNPakrQKy2Y8+VJlq5psBtGchJTuUSHcXU5Mg2JhQsB376PJ\nsCw552K6Pw8fpeMDJDZuxpKSkaJR6k9G5Dhf5q8HDXnC5Rh/PRFuKJ2GGRpX7n+2\nhT/sCax0J8jfdTy/MDGiDfJqfQrOPrMKELtsGHR9Iv6F4vKiDqXpKfqH+02E9ptz\nBk+MNcbZ3m90M8ShfRu28ebebsASfarNMzc3dk7tb3utHOGXKCf4tF8yYKo7x8BZ\noO9X4gSfAgMBAAECggEAU8ByyMpSKlTCF32TJhXnVJi/kS+IhC/Qn5JUDMuk4LXr\naAEWsWO6kV/ZRVXArjmuSzuUVrXumISapM9Ps5Ytbl95CJmGDiLDwRL815nvv6k3\nUyAS8EGKjz74RpoIoH6E7EWCAzxlnUgTn+5oP9Flije97epYk3H+e2f1f5e1Nn1d\nYNe8U+1HqJgILcxA1TAUsARBfoD7+K3z/8DVPHI8IpzAh6kTHqhqC23Rram4XoQ6\nzj/ZdVBjvnKuazETfsD+Vl3jGLQA8cKQVV70xdz3xwLcNeHsbPbpGBpZUoF73c65\nkAXOrjYl0JD5yAk+hmYhXr6H9c6z5AieuZGDrhmlFQKBgQDzV6LRXmjn4854DP/J\nI82oX2GcI4eioDZPRukhiQLzYerMQBmyqZIRC+/LTCAhYQSjNgMa+ZKyvLqv48M0\n/x398op/+n3xTs+8L49SPI48/iV+mnH7k0WI/ycd4OOKh8rrmhl/0EWb9iitwJYe\nMjTV/QxNEpPBEXfR1/mvrN/lVQKBgQDuhomOxUhWVRVH6x03slmyRBn0Oiw4MW+r\nrt1hlNgtVmTc5Mu+4G0USMZwYuOB7F8xG4Foc7rIlwS7Ic83jMJxemtqAelwOLdV\nXRLrLWJfX8+O1z/UE15l2q3SUEnQ4esPHbQnZowHLm0mdL14qSVMl1mu1XfsoZ3z\nJZTQb48CIwKBgEWbzQRtKD8lKDupJEYqSrseRbK/ax43DDITS77/DWwHl33D3FYC\nMblUm8ygwxQpR4VUfwDpYXBlklWcJovzamXpSnsfcYVkkQH47NuOXPXPkXQsw+w+\nDYcJzeu7F/vZqk9I7oBkWHUrrik9zPNoUzrfPvSRGtkAoTDSwibhoc5dAoGBAMHE\nK0T/ANeZQLNuzQps6S7G4eqjwz5W8qeeYxsdZkvWThOgDd/ewt3ijMnJm5X05hOn\ni4XF1euTuvUl7wbqYx76Wv3/1ZojiNNgy7ie4rYlyB/6vlBS97F4ZxJdxMlabbCW\n6b3EMWa4EVVXKoA1sCY7IVDE+yoQ1JYsZmq45YzPAoGBANWWHuVueFGZRDZlkNlK\nh5OmySmA0NdNug3G1upaTthyaTZ+CxGliwBqMHAwpkIRPwxUJpUwBTSEGztGTAxs\nWsUOVWlD2/1JaKSmHE8JbNg6sxLilcG6WEDzxjC5dLL1OrGOXj9WhC9KX3sq6qb6\nF/j9eUXfXjAlb042MphoF3ZC\n-----END PRIVATE KEY-----\n",
          "client_email": "[email protected]",
          "client_id": "100369174533302798535",
          "auth_uri": "https://accounts.google.com/o/oauth2/auth",
          "token_uri": "https://oauth2.googleapis.com/token",
          "auth_provider_x509_cert_url": "https://www.googleapis.com/oauth2/v1/certs",
          "client_x509_cert_url": "https://www.googleapis.com/robot/v1/metadata/x509/gspread-connection%40model-sheets-connect.iam.gserviceaccount.com"
        }
        
        credentials2 = {
          "type": "service_account",
          "project_id": "sheets-api-connect-378620",
          "private_key_id": st.secrets['sheets_api_connect_pk'],
          "private_key": "-----BEGIN PRIVATE KEY-----\nMIIEvQIBADANBgkqhkiG9w0BAQEFAASCBKcwggSjAgEAAoIBAQCtKa01beXwc88R\nnPZVQTNPVQuBnbwoOfc66gW3547ja/UEyIGAF112dt/VqHprRafkKGmlg55jqJNt\na4zceLKV+wTm7vBu7lDISTJfGzCf2TrxQYNqwMKE2LOjI69dBM8u4Dcb4k0wcp9v\ntW1ZzLVVuwTvmrg7JBHjiSaB+x5wxm/r3FOiJDXdlAgFlytzqgcyeZMJVKKBQHyJ\njEGg/1720A0numuOCt71w/2G0bDmijuj1e6tH32MwRWcvRNZ19K9ssyDz2S9p68s\nYDhIxX69OWxwScTIHLY6J2t8txf/XMivL/636fPlDADvBEVTdlT606n8CcKUVQeq\npUVdG+lfAgMBAAECggEAP38SUA7B69eTfRpo658ycOs3Amr0JW4H/bb1rNeAul0K\nZhwd/HnU4E07y81xQmey5kN5ZeNrD5EvqkZvSyMJHV0EEahZStwhjCfnDB/cxyix\nZ+kFhv4y9eK+kFpUAhBy5nX6T0O+2T6WvzAwbmbVsZ+X8kJyPuF9m8ldcPlD0sce\ntj8NwVq1ys52eosqs7zi2vjt+eMcaY393l4ls+vNq8Yf27cfyFw45W45CH/97/Nu\n5AmuzlCOAfFF+z4OC5g4rei4E/Qgpxa7/uom+BVfv9G0DIGW/tU6Sne0+37uoGKt\nW6DzhgtebUtoYkG7ZJ05BTXGp2lwgVcNRoPwnKJDxQKBgQDT5wYPUBDW+FHbvZSp\nd1m1UQuXyerqOTA9smFaM8sr/UraeH85DJPEIEk8qsntMBVMhvD3Pw8uIUeFNMYj\naLmZFObsL+WctepXrVo5NB6RtLB/jZYxiKMatMLUJIYtcKIp+2z/YtKiWcLnwotB\nWdCjVnPTxpkurmF2fWP/eewZ+wKBgQDRMtJg7etjvKyjYNQ5fARnCc+XsI3gkBe1\nX9oeXfhyfZFeBXWnZzN1ITgFHplDznmBdxAyYGiQdbbkdKQSghviUQ0igBvoDMYy\n1rWcy+a17Mj98uyNEfmb3X2cC6WpvOZaGHwg9+GY67BThwI3FqHIbyk6Ko09WlTX\nQpRQjMzU7QKBgAfi1iflu+q0LR+3a3vvFCiaToskmZiD7latd9AKk2ocsBd3Woy9\n+hXXecJHPOKV4oUJlJgvAZqe5HGBqEoTEK0wyPNLSQlO/9ypd+0fEnArwFHO7CMF\nycQprAKHJXM1eOOFFuZeQCaInqdPZy1UcV5Szla4UmUZWkk1m24blHzXAoGBAMcA\nyH4qdbxX9AYrC1dvsSRvgcnzytMvX05LU0uF6tzGtG0zVlub4ahvpEHCfNuy44UT\nxRWW/oFFaWjjyFxO5sWggpUqNuHEnRopg3QXx22SRRTGbN45li/+QAocTkgsiRh1\nqEcYZsO4mPCsQqAy6E2p6RcK+Xa+omxvSnVhq0x1AoGAKr8GdkCl4CF6rieLMAQ7\nLNBuuoYGaHoh8l5E2uOQpzwxVy/nMBcAv+2+KqHEzHryUv1owOi6pMLv7A9mTFoS\n18B0QRLuz5fSOsVnmldfC9fpUc6H8cH1SINZpzajqQA74bPwELJjnzrCnH79TnHG\nJuElxA33rFEjbgbzdyrE768=\n-----END PRIVATE KEY-----\n",
          "client_email": "gspread-connection@sheets-api-connect-378620.iam.gserviceaccount.com",
          "client_id": "106625872877651920064",
          "auth_uri": "https://accounts.google.com/o/oauth2/auth",
          "token_uri": "https://oauth2.googleapis.com/token",
          "auth_provider_x509_cert_url": "https://www.googleapis.com/oauth2/v1/certs",
          "client_x509_cert_url": "https://www.googleapis.com/robot/v1/metadata/x509/gspread-connection%40sheets-api-connect-378620.iam.gserviceaccount.com"
        }

        uri = st.secrets['mongo_uri']
        client = pymongo.MongoClient(uri, retryWrites=True, serverSelectionTimeoutMS=500000)
        db = client["NBA_DFS"]
     
        NBA_Data = st.secrets['NBA_Data']

        gc = gspread.service_account_from_dict(credentials)
        gc2 = gspread.service_account_from_dict(credentials2)

        return gc, gc2, db, NBA_Data
    
gcservice_account, gcservice_account2, db, NBA_Data = init_conn()

dk_columns = ['PG', 'SG', 'SF', 'PF', 'C', 'G', 'F', 'FLEX', 'salary', 'proj', 'Team', 'Team_count', 'Secondary', 'Secondary_count', 'Own']
fd_columns = ['PG1', 'PG2', 'SG1', 'SG2', 'SF1', 'SF2', 'PF1', 'PF2', 'C1', 'salary', 'proj', 'Team', 'Team_count', 'Secondary', 'Secondary_count', 'Own']

roo_format = {'Top_finish': '{:.2%}', 'Top_5_finish': '{:.2%}', 'Top_10_finish': '{:.2%}', '20+%': '{:.2%}', '4x%': '{:.2%}', '5x%': '{:.2%}', '6x%': '{:.2%}', 'GPP%': '{:.2%}'}

st.markdown("""
<style>
    /* Tab styling */
    .stTabs [data-baseweb="tab-list"] {
        gap: 8px;
        padding: 4px;
    }

    .stTabs [data-baseweb="tab"] {
        height: 50px;
        white-space: pre-wrap;
        background-color: #DAA520;
        color: white;
        border-radius: 10px;
        gap: 1px;
        padding: 10px 20px;
        font-weight: bold;
        transition: all 0.3s ease;
    }

    .stTabs [aria-selected="true"] {
        background-color: #DAA520;
        border: 3px solid #FFD700;
        color: white;
    }

    .stTabs [data-baseweb="tab"]:hover {
        background-color: #FFD700;
        cursor: pointer;
    }
</style>""", unsafe_allow_html=True)

@st.cache_data(ttl=60)
def load_overall_stats():
    collection = db["DK_Player_Stats"] 
    cursor = collection.find()

    raw_display = pd.DataFrame(list(cursor))
    raw_display = raw_display[['Name', 'Salary', 'Position', 'Team', 'Opp', 'Minutes', 'FGM', 'FGA', 'FG2M', 'FG2A', 'Threes', 'FG3A', 'FTM', 'FTA', 'TRB', 'AST', 'STL', 'BLK', 'TOV', '2P', '3P', 'FT',
                               'Points', 'Rebounds', 'Assists', 'PRA', 'PR', 'PA', 'RA', 'Steals', 'Blocks', 'Turnovers', 'Fantasy', 'Raw', 'Own']]
    raw_display = raw_display.rename(columns={"Name": "Player", "Nickname": "Player", "Fantasy": "Median"})
    raw_display = raw_display.loc[raw_display['Median'] > 0]
    raw_display = raw_display.apply(pd.to_numeric, errors='ignore')
    dk_raw = raw_display.sort_values(by='Median', ascending=False)
    
    collection = db["FD_Player_Stats"] 
    cursor = collection.find()

    raw_display = pd.DataFrame(list(cursor))
    raw_display = raw_display[['Nickname', 'Salary', 'Position', 'Team', 'Opp', 'Minutes', 'FGM', 'FGA', 'FG2M', 'FG2A', 'Threes', 'FG3A', 'FTM', 'FTA', 'TRB', 'AST', 'STL', 'BLK', 'TOV', '2P', '3P', 'FT',
                               'Points', 'Rebounds', 'Assists', 'PRA', 'PR', 'PA', 'RA', 'Steals', 'Blocks', 'Turnovers', 'Fantasy', 'Raw', 'Own']]
    raw_display = raw_display.rename(columns={"Name": "Player", "Nickname": "Player", "Fantasy": "Median"})
    raw_display = raw_display.loc[raw_display['Median'] > 0]
    raw_display = raw_display.apply(pd.to_numeric, errors='ignore')
    fd_raw = raw_display.sort_values(by='Median', ascending=False)
    
    collection = db["Secondary_DK_Player_Stats"] 
    cursor = collection.find()

    raw_display = pd.DataFrame(list(cursor))
    raw_display = raw_display[['Name', 'Salary', 'Position', 'Team', 'Opp', 'Minutes', 'FGM', 'FGA', 'FG2M', 'FG2A', 'Threes', 'FG3A', 'FTM', 'FTA', 'TRB', 'AST', 'STL', 'BLK', 'TOV', '2P', '3P', 'FT',
                               'Points', 'Rebounds', 'Assists', 'PRA', 'PR', 'PA', 'RA', 'Steals', 'Blocks', 'Turnovers', 'Fantasy', 'Raw', 'Own']]
    raw_display = raw_display.rename(columns={"Name": "Player", "Nickname": "Player", "Fantasy": "Median"})
    raw_display = raw_display.loc[raw_display['Median'] > 0]
    raw_display = raw_display.apply(pd.to_numeric, errors='ignore')
    dk_raw_sec = raw_display.sort_values(by='Median', ascending=False)
    
    collection = db["Secondary_FD_Player_Stats"] 
    cursor = collection.find()

    raw_display = pd.DataFrame(list(cursor))
    raw_display = raw_display[['Nickname', 'Salary', 'Position', 'Team', 'Opp', 'Minutes', 'FGM', 'FGA', 'FG2M', 'FG2A', 'Threes', 'FG3A', 'FTM', 'FTA', 'TRB', 'AST', 'STL', 'BLK', 'TOV', '2P', '3P', 'FT',
                               'Points', 'Rebounds', 'Assists', 'PRA', 'PR', 'PA', 'RA', 'Steals', 'Blocks', 'Turnovers', 'Fantasy', 'Raw', 'Own']]
    raw_display = raw_display.rename(columns={"Name": "Player", "Nickname": "Player", "Fantasy": "Median"})
    raw_display = raw_display.loc[raw_display['Median'] > 0]
    raw_display = raw_display.apply(pd.to_numeric, errors='ignore')
    fd_raw_sec = raw_display.sort_values(by='Median', ascending=False)

    collection = db["Player_Range_Of_Outcomes"] 
    cursor = collection.find()

    raw_display = pd.DataFrame(list(cursor))
    raw_display = raw_display[['Player', 'Minutes Proj', 'Position', 'Team', 'Opp', 'Salary', 'Floor', 'Median', 'Ceiling', 'Top_finish', 'Top_5_finish', 'Top_10_finish', '20+%', '4x%', '5x%', '6x%', 'GPP%',
                               'Own', 'Small_Own', 'Large_Own', 'Cash_Own', 'CPT_Own', 'LevX', 'ValX', 'site', 'version', 'slate', 'timestamp', 'player_ID']]
    raw_display = raw_display.loc[raw_display['Median'] > 0]
    raw_display = raw_display.apply(pd.to_numeric, errors='ignore')
    roo_raw = raw_display.sort_values(by='Median', ascending=False)

    timestamp = raw_display['timestamp'].values[0]

    collection = db["Range_Of_Outcomes_Backlog"] 
    cursor = collection.find()

    raw_display = pd.DataFrame(list(cursor))
    raw_display = raw_display[['Player', 'Minutes Proj', 'Position', 'Team', 'Opp', 'Salary', 'Floor', 'Median', 'Ceiling', 'Top_finish', 'Top_5_finish', 'Top_10_finish', '20+%', '4x%', '5x%', '6x%', 'GPP%',
                               'Own', 'Small_Own', 'Large_Own', 'Cash_Own', 'CPT_Own', 'LevX', 'ValX', 'site', 'version', 'slate', 'timestamp', 'Date']]
    roo_backlog = raw_display.sort_values(by='Date', ascending=False)
    roo_backlog = roo_backlog[roo_backlog['slate'] == 'Main Slate']
    
    return dk_raw, fd_raw, dk_raw_sec, fd_raw_sec, roo_raw, timestamp, roo_backlog

@st.cache_data(ttl = 60)
def init_DK_lineups():  
        
        collection = db['DK_NBA_name_map']
        cursor = collection.find()
        raw_data = pd.DataFrame(list(cursor))
        names_dict = dict(zip(raw_data['key'], raw_data['value']))
    
        collection = db["DK_NBA_seed_frame"] 
        cursor = collection.find().limit(10000)
    
        raw_display = pd.DataFrame(list(cursor))
        raw_display = raw_display[['PG', 'SG', 'SF', 'PF', 'C', 'G', 'F', 'FLEX', 'salary', 'proj', 'Team', 'Team_count', 'Secondary', 'Secondary_count', 'Own']]
        dict_columns = ['PG', 'SG', 'SF', 'PF', 'C', 'G', 'F', 'FLEX']
        for col in dict_columns:
            raw_display[col] = raw_display[col].map(names_dict)
        DK_seed = raw_display.to_numpy()

        return DK_seed

@st.cache_data(ttl = 60)
def init_FD_lineups():  
        
        collection = db['FD_NBA_name_map']
        cursor = collection.find()
        raw_data = pd.DataFrame(list(cursor))
        names_dict = dict(zip(raw_data['key'], raw_data['value']))
    
        collection = db["FD_NBA_seed_frame"] 
        cursor = collection.find().limit(10000)
    
        raw_display = pd.DataFrame(list(cursor))
        raw_display = raw_display[['PG1', 'PG2', 'SG1', 'SG2', 'SF1', 'SF2', 'PF1', 'PF2', 'C1', 'salary', 'proj', 'Team', 'Team_count', 'Secondary', 'Secondary_count', 'Own']]
        dict_columns = ['PG1', 'PG2', 'SG1', 'SG2', 'SF1', 'SF2', 'PF1', 'PF2', 'C1']
        for col in dict_columns:
            raw_display[col] = raw_display[col].map(names_dict)
        FD_seed = raw_display.to_numpy()

        return FD_seed

def convert_df_to_csv(df):
    return df.to_csv().encode('utf-8')

@st.cache_data
def convert_df(array):
    array = pd.DataFrame(array, columns=column_names)
    return array.to_csv().encode('utf-8')

dk_raw, fd_raw, dk_raw_sec, fd_raw_sec, roo_raw, timestamp, roo_backlog = load_overall_stats()
salary_dict = dict(zip(roo_raw.Player, roo_raw.Salary))

try:
    dk_lineups = init_DK_lineups()
    fd_lineups = init_FD_lineups()
except:
    dk_lineups = pd.DataFrame(columns=dk_columns)
    fd_lineups = pd.DataFrame(columns=fd_columns)
t_stamp = f"Last Update: " + str(timestamp) + f" CST"

tab1, tab2 = st.tabs(['Range of Outcomes', 'Optimals'])

with st.sidebar:
    st.header("Quick Builder")
    st.info("This is a quick hand building helper to give you some basic info about player combos and lineup feasibility")
    sidebar_site = st.selectbox("What site are you running?", ('Draftkings', 'Fanduel'), key='sidebar_site')
    sidebar_slate = st.selectbox("What slate are you running?", ('Main Slate', 'Secondary Slate'), key='sidebar_slate')

    if sidebar_site == 'Draftkings':
        roo_sample = roo_raw[roo_raw['slate'] == str(sidebar_slate)]
        roo_sample = roo_sample[roo_sample['site'] == 'Draftkings']
        roo_sample = roo_sample.sort_values(by='Own', ascending=False)
        selected_pg = []
        selected_sg = []
        selected_sf = []
        selected_pf = []
        selected_c = []
        selected_g = []
        selected_f = []
        selected_flex = []
    elif sidebar_site == 'Fanduel':
        roo_sample = roo_raw[roo_raw['slate'] == str(sidebar_slate)]
        roo_sample = roo_sample[roo_sample['site'] == 'Fanduel']
        roo_sample = roo_sample.sort_values(by='Own', ascending=False)
        selected_pg1 = []
        selected_pg2 = []
        selected_sg1 = []
        selected_sg2 = []
        selected_sf1 = []
        selected_sf2 = []
        selected_pf1 = []
        selected_pf2 = []
        selected_c1 = []

    # Get unique players by position from dk_roo_raw
    pgs = roo_sample[roo_sample['Position'].str.contains('PG')]['Player'].unique()
    sgs = roo_sample[roo_sample['Position'].str.contains('SG')]['Player'].unique()
    sfs = roo_sample[roo_sample['Position'].str.contains('SF')]['Player'].unique()
    pfs = roo_sample[roo_sample['Position'].str.contains('PF')]['Player'].unique()
    centers = roo_sample[roo_sample['Position'].str.contains('C')]['Player'].unique()
    guards = roo_sample[roo_sample['Position'].str.contains('G')]['Player'].unique()
    forwards = roo_sample[roo_sample['Position'].str.contains('F')]['Player'].unique()
    flex = roo_sample['Player'].unique()

    if sidebar_site == 'Draftkings':
        selected_pgs = st.multiselect('Select PG:', list(pgs), default=None, placeholder='Select PG', label_visibility='collapsed', key='pg1')
        selected_sgs = st.multiselect('Select SG:', list(sgs), default=None, placeholder='Select SG', label_visibility='collapsed', key='sg1')
        selected_sfs = st.multiselect('Select SF:', list(sfs), default=None, placeholder='Select SF', label_visibility='collapsed', key='sf1')
        selected_pfs = st.multiselect('Select PF:', list(pfs), default=None, placeholder='Select PF', label_visibility='collapsed', key='pf1')
        selected_cs = st.multiselect('Select C:', list(centers), default=None, placeholder='Select C', label_visibility='collapsed', key='c1')
        selected_g = st.multiselect('Select G:', list(guards), default=None, placeholder='Select G', label_visibility='collapsed', key='g')
        selected_f = st.multiselect('Select F:', list(forwards), default=None, placeholder='Select F', label_visibility='collapsed', key='f')
        selected_flex = st.multiselect('Select Flex:', list(flex), default=None, placeholder='Select Flex', label_visibility='collapsed', key='flex')

        # Combine all selected players
        all_selected = selected_pgs + selected_sgs + selected_sfs + selected_pfs + selected_cs + selected_g + selected_f + selected_flex
    
    elif sidebar_site == 'Fanduel':
        selected_pg1 = st.multiselect('Select PG1:', list(pgs), default=None, placeholder='Select PG1', label_visibility='collapsed', key='pg1')
        selected_pg2 = st.multiselect('Select PG2:', list(pgs), default=None, placeholder='Select PG2', label_visibility='collapsed', key='pg2')
        selected_sg1 = st.multiselect('Select SG1:', list(sgs), default=None, placeholder='Select SG1', label_visibility='collapsed', key='sg1')
        selected_sg2 = st.multiselect('Select SG2:', list(sgs), default=None, placeholder='Select SG2', label_visibility='collapsed', key='sg2')
        selected_sf1 = st.multiselect('Select SF1:', list(sfs), default=None, placeholder='Select SF1', label_visibility='collapsed', key='sf1')
        selected_sf2 = st.multiselect('Select SF2:', list(sfs), default=None, placeholder='Select SF2', label_visibility='collapsed', key='sf2')
        selected_pf1 = st.multiselect('Select PF1:', list(pfs), default=None, placeholder='Select PF1', label_visibility='collapsed', key='pf1')
        selected_pf2 = st.multiselect('Select PF2:', list(pfs), default=None, placeholder='Select PF2', label_visibility='collapsed', key='pf2')
        selected_c1 = st.multiselect('Select C1:', list(centers), default=None, placeholder='Select C1', label_visibility='collapsed', key='c1')

        # Combine all selected players
        all_selected = selected_pg1 + selected_pg2 + selected_sg1 + selected_sg2 + selected_sf1 + selected_sf2 + selected_pf1 + selected_pf2 + selected_c1

    if all_selected:
        # Get stats for selected players
        selected_stats = roo_sample[roo_sample['Player'].isin(all_selected)]
        
        # Calculate sums
        salary_sum = selected_stats['Salary'].sum()
        median_sum = selected_stats['Median'].sum()
        own_sum = selected_stats['Own'].sum()
        levx_sum = selected_stats['LevX'].sum()

        # Display sums
        st.write('---')
        if sidebar_site == 'Draftkings':
            if salary_sum > 50000:
                st.warning(f'Total Salary: ${salary_sum:.2f} exceeds limit of $50,000')
            else:
                st.write(f'Total Salary: ${salary_sum:.2f}')
        elif sidebar_site == 'Fanduel':
            if salary_sum > 60000:
                st.warning(f'Total Salary: ${salary_sum:.2f} exceeds limit of $60,000')
            else:
                st.write(f'Total Salary: ${salary_sum:.2f}')
        st.write(f'Total Median: {median_sum:.2f}')
        st.write(f'Total Ownership: {own_sum:.2f}%')
        st.write(f'Total LevX: {levx_sum:.2f}')

with tab1:
    
    with st.expander("Info and Filters"):
        with st.container():
            st.info("Advanced view includes all stats and thresholds, simple includes just basic columns for ease of use on mobile")
        with st.container():
            # First row - timestamp and reset button
            col1, col2 = st.columns([3, 1])
            with col1:
                st.info(t_stamp)
            with col2:
                if st.button("Load/Reset Data", key='reset1'):
                    st.cache_data.clear()
                    dk_raw, fd_raw, dk_raw_sec, fd_raw_sec, roo_raw, timestamp, roo_backlog = load_overall_stats()
                    id_dict = dict(zip(roo_raw.Player, roo_raw.player_ID))
                    dk_lineups = init_DK_lineups()
                    fd_lineups = init_FD_lineups()
                    t_stamp = f"Last Update: " + str(timestamp) + f" CST"
                    for key in st.session_state.keys():
                        del st.session_state[key]
        col1, col2, col3, col4 = st.columns(4)
        with col1:
            view_var2 = st.radio("View Type", ('Simple', 'Advanced'), key='view_var2')
        with col2:
            site_var2 = st.radio("Site", ('Draftkings', 'Fanduel'), key='site_var2')

            # Process site selection
            if site_var2 == 'Draftkings':
                site_baselines = roo_raw[roo_raw['site'] == 'Draftkings']
                site_backlog = roo_backlog[roo_backlog['site'] == 'Draftkings']
            elif site_var2 == 'Fanduel':
                site_baselines = roo_raw[roo_raw['site'] == 'Fanduel']
                site_backlog = roo_backlog[roo_backlog['site'] == 'Fanduel']
        with col3:
            slate_split = st.radio("Slate Type", ('Main Slate', 'Secondary', 'Backlog'), key='slate_split')

            if slate_split == 'Main Slate':
                raw_baselines = site_baselines[site_baselines['slate'] == 'Main Slate']
            elif slate_split == 'Secondary':
                raw_baselines = site_baselines[site_baselines['slate'] == 'Secondary Slate']
            elif slate_split == 'Backlog':
                raw_baselines = site_backlog
                # Third row - backlog options
                col1, col2 = st.columns(2)
                with col1:
                    view_all = st.checkbox("View all dates?", key='view_all')
                with col2:
                    if not view_all:
                        date_var2 = st.date_input("Select date", key='date_var2')
                
                if view_all:
                    raw_baselines = raw_baselines.sort_values(by=['Median', 'Date'], ascending=[False, False])
                else:
                    raw_baselines = raw_baselines[raw_baselines['Date'] == date_var2.strftime('%m-%d-%Y')]
                    raw_baselines = raw_baselines.sort_values(by='Median', ascending=False)
        
        with col4:
            split_var2 = st.radio("Slate Range", ('Full Slate Run', 'Specific Games'), key='split_var2')
            if split_var2 == 'Specific Games':
                team_var2 = st.multiselect('Select teams for ROO', options=raw_baselines['Team'].unique(), key='team_var2')
            else:
                team_var2 = raw_baselines.Team.values.tolist()

        pos_var2 = st.selectbox('Position Filter', options=['All', 'PG', 'SG', 'SF', 'PF', 'C'], key='pos_var2')
        col1, col2 = st.columns(2)
        with col1:
            low_salary = st.number_input('Enter Lowest Salary', min_value=3000, max_value=15000, value=3000, step=100, key='low_salary')
        with col2:
            high_salary = st.number_input('Enter Highest Salary', min_value=3000, max_value=15000, value=15000, step=100, key='high_salary')
    
    display_container_1 = st.empty()
    display_dl_container_1 = st.empty()
    display_proj = raw_baselines[raw_baselines['Team'].isin(team_var2)]
    display_proj = display_proj[display_proj['Salary'].between(low_salary, high_salary)]
    if view_var2 == 'Advanced':
        display_proj = display_proj[['Player', 'Minutes Proj', 'Position', 'Team', 'Opp', 'Salary', 'Floor', 'Median', 'Ceiling', 'Top_finish', 'Top_5_finish', 'Top_10_finish', '20+%', '4x%', '5x%', '6x%', 'GPP%',
                                    'Own', 'Small_Own', 'Large_Own', 'Cash_Own', 'CPT_Own', 'LevX', 'ValX']]
    elif view_var2 == 'Simple':
        display_proj = display_proj[['Player', 'Position', 'Salary', 'Median', 'GPP%', 'Own']]
    export_data = display_proj.copy()


    # display_proj = display_proj.set_index('Player')
    st.session_state.display_proj = display_proj
        
    with display_container_1:
        display_container = st.empty()
        if 'display_proj' in st.session_state:
            if pos_var2 == 'All':
                st.session_state.display_proj = st.session_state.display_proj
            elif pos_var2 != 'All':
                st.session_state.display_proj = st.session_state.display_proj[st.session_state.display_proj['Position'].str.contains(pos_var2)]
            st.dataframe(st.session_state.display_proj.style.set_properties(**{'font-size': '6pt'}).background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(roo_format, precision=2), height=1000, use_container_width = True, hide_index=True)
    
    with display_dl_container_1:
            display_dl_container = st.empty()
            if 'display_proj' in st.session_state:
                st.download_button(
                            label="Export Tables",
                            data=convert_df_to_csv(export_data),
                            file_name='NBA_ROO_export.csv',
                            mime='text/csv',
                )

with tab2:
    with st.expander("Info and Filters"):
        if st.button("Load/Reset Data", key='reset2'):
            st.cache_data.clear()
            dk_raw, fd_raw, dk_raw_sec, fd_raw_sec, roo_raw, timestamp, roo_backlog = load_overall_stats()
            dk_lineups = init_DK_lineups()
            fd_lineups = init_FD_lineups()
            t_stamp = f"Last Update: " + str(timestamp) + f" CST"
            for key in st.session_state.keys():
                del st.session_state[key]
    
        col1, col2, col3, col4, col5 = st.columns(5)
        with col1:
            slate_var1 = st.radio("Which data are you loading?", ('Main Slate', 'Just the Main Slate'))
        with col2:
            site_var1 = st.radio("What site are you working with?", ('Draftkings', 'Fanduel'))
        with col3:
            lineup_num_var = st.number_input("How many lineups do you want to display?", min_value=1, max_value=1000, value=150, step=1)
        with col4:
            if site_var1 == 'Draftkings':
                raw_baselines = dk_raw
                ROO_slice = roo_raw[roo_raw['site'] == 'Draftkings']
                id_dict = dict(zip(ROO_slice.Player, ROO_slice.player_ID))
                # Get the minimum and maximum ownership values from dk_lineups
                min_own = np.min(dk_lineups[:,14])
                max_own = np.max(dk_lineups[:,14])
                column_names = dk_columns
                
                player_var1 = st.radio("Do you want a frame with specific Players?", ('Full Slate', 'Specific Players'), key='player_var1')
                if player_var1 == 'Specific Players':
                        player_var2 = st.multiselect('Which players do you want?', options = dk_raw['Player'].unique())
                elif player_var1 == 'Full Slate':
                        player_var2 = dk_raw.Player.values.tolist()
                        
            elif site_var1 == 'Fanduel':
                raw_baselines = fd_raw
                ROO_slice = roo_raw[roo_raw['site'] == 'Fanduel']
                id_dict = dict(zip(ROO_slice.Player, ROO_slice.player_ID))
                min_own = np.min(fd_lineups[:,15])
                max_own = np.max(fd_lineups[:,15])
                column_names = fd_columns
                
                player_var1 = st.radio("Do you want a frame with specific Players?", ('Full Slate', 'Specific Players'), key='player_var1')
                if player_var1 == 'Specific Players':
                        player_var2 = st.multiselect('Which players do you want?', options = fd_raw['Player'].unique())
                elif player_var1 == 'Full Slate':
                        player_var2 = fd_raw.Player.values.tolist()
        with col5:
            if st.button("Prepare data export", key='data_export'):
                data_export = st.session_state.working_seed.copy()
                if site_var1 == 'Draftkings':
                    for col_idx in range(8):
                        data_export[:, col_idx] = np.array([id_dict.get(player, player) for player in data_export[:, col_idx]])
                elif site_var1 == 'Fanduel':
                    for col_idx in range(9):
                        data_export[:, col_idx] = np.array([id_dict.get(player, player) for player in data_export[:, col_idx]])
                st.download_button(
                    label="Export optimals set",
                    data=convert_df(data_export),
                    file_name='NBA_optimals_export.csv',
                    mime='text/csv',
            )

    if site_var1 == 'Draftkings':
        if 'working_seed' in st.session_state:
            st.session_state.working_seed = st.session_state.working_seed
            if player_var1 == 'Specific Players':
                st.session_state.working_seed = st.session_state.working_seed[np.equal.outer(st.session_state.working_seed, player_var2).any(axis=1).all(axis=1)]
            elif player_var1 == 'Full Slate':
                st.session_state.working_seed = dk_lineups.copy()
            st.session_state.data_export_display = pd.DataFrame(st.session_state.working_seed[0:lineup_num_var], columns=column_names)
        elif 'working_seed' not in st.session_state:
            st.session_state.working_seed = dk_lineups.copy()
            st.session_state.working_seed = st.session_state.working_seed
            if player_var1 == 'Specific Players':
                st.session_state.working_seed = st.session_state.working_seed[np.equal.outer(st.session_state.working_seed, player_var2).any(axis=1).all(axis=1)]
            elif player_var1 == 'Full Slate':
                st.session_state.working_seed = dk_lineups.copy()
            st.session_state.data_export_display = pd.DataFrame(st.session_state.working_seed[0:lineup_num_var], columns=column_names)
        
    elif site_var1 == 'Fanduel':
        if 'working_seed' in st.session_state:
            st.session_state.working_seed = st.session_state.working_seed
            if player_var1 == 'Specific Players':
                st.session_state.working_seed = st.session_state.working_seed[np.equal.outer(st.session_state.working_seed, player_var2).any(axis=1).all(axis=1)]
            elif player_var1 == 'Full Slate':
                st.session_state.working_seed = fd_lineups.copy()
            st.session_state.data_export_display = pd.DataFrame(st.session_state.working_seed[0:lineup_num_var], columns=column_names)
        elif 'working_seed' not in st.session_state:
            st.session_state.working_seed = fd_lineups.copy()
            st.session_state.working_seed = st.session_state.working_seed
            if player_var1 == 'Specific Players':
                st.session_state.working_seed = st.session_state.working_seed[np.equal.outer(st.session_state.working_seed, player_var2).any(axis=1).all(axis=1)]
            elif player_var1 == 'Full Slate':
                st.session_state.working_seed = fd_lineups.copy()
            st.session_state.data_export_display = pd.DataFrame(st.session_state.working_seed[0:lineup_num_var], columns=column_names)

    export_file = st.session_state.data_export_display.copy()
    if site_var1 == 'Draftkings':
        for col_idx in range(8):
            export_file.iloc[:, col_idx] = export_file.iloc[:, col_idx].map(id_dict)
    elif site_var1 == 'Fanduel':
        for col_idx in range(9):
            export_file.iloc[:, col_idx] = export_file.iloc[:, col_idx].map(id_dict)
            
    with st.container():
        if st.button("Reset Optimals", key='reset3'):
            for key in st.session_state.keys():
                del st.session_state[key]
            if site_var1 == 'Draftkings':
                st.session_state.working_seed = dk_lineups.copy()
            elif site_var1 == 'Fanduel':
                st.session_state.working_seed = fd_lineups.copy()
        if 'data_export_display' in st.session_state:
            st.dataframe(st.session_state.data_export_display.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(precision=2), height=500, use_container_width = True)
        st.download_button(
            label="Export display optimals",
            data=convert_df(export_file),
            file_name='NBA_display_optimals.csv',
            mime='text/csv',
        )
    
    with st.container():
        if 'working_seed' in st.session_state:
            # Create a new dataframe with summary statistics
            if site_var1 == 'Draftkings':
                summary_df = pd.DataFrame({
                    'Metric': ['Min', 'Average', 'Max', 'STDdev'],
                    'Salary': [
                        np.min(st.session_state.working_seed[:,8]),
                        np.mean(st.session_state.working_seed[:,8]),
                        np.max(st.session_state.working_seed[:,8]),
                        np.std(st.session_state.working_seed[:,8])
                    ],
                    'Proj': [
                        np.min(st.session_state.working_seed[:,9]),
                        np.mean(st.session_state.working_seed[:,9]),
                        np.max(st.session_state.working_seed[:,9]),
                        np.std(st.session_state.working_seed[:,9])
                    ],
                    'Own': [
                        np.min(st.session_state.working_seed[:,14]),
                        np.mean(st.session_state.working_seed[:,14]),
                        np.max(st.session_state.working_seed[:,14]),
                        np.std(st.session_state.working_seed[:,14])
                    ]
                })
            elif site_var1 == 'Fanduel':
                summary_df = pd.DataFrame({
                    'Metric': ['Min', 'Average', 'Max', 'STDdev'],
                    'Salary': [
                        np.min(st.session_state.working_seed[:,9]),
                        np.mean(st.session_state.working_seed[:,9]),
                        np.max(st.session_state.working_seed[:,9]),
                        np.std(st.session_state.working_seed[:,9])
                    ],
                    'Proj': [
                        np.min(st.session_state.working_seed[:,10]),
                        np.mean(st.session_state.working_seed[:,10]),
                        np.max(st.session_state.working_seed[:,10]),
                        np.std(st.session_state.working_seed[:,10])
                    ],
                    'Own': [
                        np.min(st.session_state.working_seed[:,15]),
                        np.mean(st.session_state.working_seed[:,15]),
                        np.max(st.session_state.working_seed[:,15]),
                        np.std(st.session_state.working_seed[:,15])
                    ]
                })

            # Set the index of the summary dataframe as the "Metric" column
            summary_df = summary_df.set_index('Metric')

            # Display the summary dataframe
            st.subheader("Optimal Statistics")
            st.dataframe(summary_df.style.format({
                'Salary': '{:.2f}',
                'Proj': '{:.2f}',
                'Own': '{:.2f}'
            }).background_gradient(cmap='RdYlGn', axis=0, subset=['Salary', 'Proj', 'Own']), use_container_width=True)

    with st.container():
        tab1, tab2 = st.tabs(["Display Frequency", "Seed Frame Frequency"])
        with tab1:
            if 'data_export_display' in st.session_state:
                if site_var1 == 'Draftkings':
                    player_columns = st.session_state.data_export_display.iloc[:, :8]
                elif site_var1 == 'Fanduel':
                    player_columns = st.session_state.data_export_display.iloc[:, :9]
                
                # Flatten the DataFrame and count unique values
                value_counts = player_columns.values.flatten().tolist()
                value_counts = pd.Series(value_counts).value_counts()
                
                percentages = (value_counts / lineup_num_var * 100).round(2)
                
                # Create a DataFrame with the results
                summary_df = pd.DataFrame({
                    'Player': value_counts.index,
                    'Salary': [salary_dict.get(player, player) for player in value_counts.index],
                    'Frequency': value_counts.values,
                    'Percentage': percentages.values                        
                })
                
                # Sort by frequency in descending order
                summary_df = summary_df.sort_values('Frequency', ascending=False)
                
                # Display the table
                st.write("Player Frequency Table:")
                st.dataframe(summary_df.style.format({'Percentage': '{:.2f}%'}, precision=2), height=500, use_container_width=True)
            
                st.download_button(
                    label="Export player frequency",
                    data=convert_df_to_csv(summary_df),
                    file_name='NBA_player_frequency.csv',
                    mime='text/csv',
                )
        with tab2:
            if 'working_seed' in st.session_state:
                if site_var1 == 'Draftkings':
                    player_columns = st.session_state.working_seed[:, :8]
                elif site_var1 == 'Fanduel':
                    player_columns = st.session_state.working_seed[:, :9]
                
                # Flatten the DataFrame and count unique values
                value_counts = player_columns.flatten().tolist()
                value_counts = pd.Series(value_counts).value_counts()
                
                percentages = (value_counts / len(st.session_state.working_seed) * 100).round(2)
                # Create a DataFrame with the results
                summary_df = pd.DataFrame({
                    'Player': value_counts.index,
                    'Salary': [salary_dict.get(player, player) for player in value_counts.index],
                    'Frequency': value_counts.values,
                    'Percentage': percentages.values                        
                })
                
                # Sort by frequency in descending order
                summary_df = summary_df.sort_values('Frequency', ascending=False)
                
                # Display the table
                st.write("Seed Frame Frequency Table:")
                st.dataframe(summary_df.style.format({'Percentage': '{:.2f}%'}, precision=2), height=500, use_container_width=True)
            
                st.download_button(
                    label="Export seed frame frequency",
                    data=convert_df_to_csv(summary_df),
                    file_name='NBA_seed_frame_frequency.csv',
                    mime='text/csv',
                )