File size: 4,836 Bytes
1649416
c4f7f00
90bf4dc
 
d1c01a2
cb866dd
be68f20
c4f7f00
 
 
377f3f1
eda6735
c4f7f00
90bf4dc
c4f7f00
 
 
 
 
d382509
c4f7f00
90bf4dc
c4f7f00
 
 
d382509
c4f7f00
90bf4dc
2c02a9e
c4f7f00
90bf4dc
 
be68f20
eda6735
c4f7f00
be68f20
 
 
 
 
 
90bf4dc
377f3f1
be13366
377f3f1
c4f7f00
90bf4dc
be68f20
 
377f3f1
be68f20
90bf4dc
b1f938f
90bf4dc
 
be68f20
 
90bf4dc
c4f7f00
377f3f1
90bf4dc
377f3f1
 
 
 
 
90bf4dc
be68f20
90bf4dc
c4f7f00
be68f20
90bf4dc
be68f20
90bf4dc
b1f938f
 
377f3f1
 
 
 
be68f20
 
90bf4dc
 
8c06cc2
90bf4dc
be68f20
 
c4f7f00
be68f20
c4f7f00
eda6735
c4f7f00
be68f20
 
 
377f3f1
c1cc067
 
be68f20
 
377f3f1
 
be68f20
377f3f1
 
be68f20
 
 
 
c4f7f00
 
 
90bf4dc
 
 
 
c4f7f00
90bf4dc
 
 
 
 
c4f7f00
90bf4dc
 
 
 
c4f7f00
eda6735
90bf4dc
b1f938f
 
8c06cc2
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
import os
import fitz  # PyMuPDF
from docx import Document
from sentence_transformers import SentenceTransformer
from langchain_community.vectorstores import FAISS
from langchain_community.embeddings import HuggingFaceEmbeddings
from transformers import AutoModelForSeq2SeqLM, AutoTokenizer
from nltk.tokenize import sent_tokenize
import torch
import gradio as gr
import pickle

# Function to extract text from a PDF file
def extract_text_from_pdf(pdf_path):
    text = ""
    doc = fitz.open(pdf_path)
    for page in doc:
        text += page.get_text()
    return text

# Function to extract text from a Word document
def extract_text_from_docx(docx_path):
    doc = Document(docx_path)
    text = "\n".join([para.text for para in doc.paragraphs])
    return text

# Initialize the embedding model
embedding_model = SentenceTransformer('all-MiniLM-L6-v2')

# Hugging Face API token
api_token = os.getenv('HUGGINGFACEHUB_API_TOKEN')
if not api_token:
    raise ValueError("HUGGINGFACEHUB_API_TOKEN environment variable is not set")

# Define RAG models
generator_model_name = "facebook/bart-base"
retriever_model_name = "facebook/bart-base"  # Can be the same as generator
generator = AutoModelForSeq2SeqLM.from_pretrained(generator_model_name)
generator_tokenizer = AutoTokenizer.from_pretrained(generator_model_name)
retriever = AutoModelForSeq2SeqLM.from_pretrained(retriever_model_name)
retriever_tokenizer = AutoTokenizer.from_pretrained(retriever_model_name)

# Initialize FAISS index using LangChain
hf_embeddings = HuggingFaceEmbeddings(model_name='sentence-transformers/all-MiniLM-L6-v2')

# Load or create FAISS index
index_path = "faiss_index.pkl"
if os.path.exists(index_path):
    with open(index_path, "rb") as f:
        faiss_index = pickle.load(f)
        print("Loaded FAISS index from faiss_index.pkl")
else:
    faiss_index = FAISS(embedding_function=hf_embeddings)

def preprocess_text(text):
    sentences = sent_tokenize(text)
    return sentences

def upload_files(files):
    global faiss_index
    try:
        for file in files:
            if file.name.endswith('.pdf'):
                text = extract_text_from_pdf(file.name)
            elif file.name.endswith('.docx'):
                text = extract_text_from_docx(file.name)
            else:
                return {"error": "Unsupported file format"}

            # Preprocess text
            sentences = preprocess_text(text)

            # Encode sentences and add to FAISS index
            embeddings = embedding_model.encode(sentences)
            for sentence, embedding in zip(sentences, embeddings):
                faiss_index.add_sentence(sentence, embedding)

        # Save the updated index
        with open(index_path, "wb") as f:
            pickle.dump(faiss_index, f)

        return {"message": "Files processed successfully"}
    except Exception as e:
        print(f"Error processing files: {e}")
        return {"error": str(e)}  # Provide informative error message

def process_and_query(state, files, question):
    if files:
        upload_result = upload_files(files)
        if "error" in upload_result:
            return upload_result

    if question:
        # Preprocess the question
        question_embedding = embedding_model.encode([question])

        # Search the FAISS index for similar passages
        retrieved_results = faiss_index.similarity_search(question, k=5)  # Retrieve top 5 passages
        retrieved_passages = [result['text'] for result in retrieved_results]

        # Use generator model to generate response based on question and retrieved passages
        combined_input = question + " ".join(retrieved_passages)
        inputs = generator_tokenizer(combined_input, return_tensors="pt")
        with torch.no_grad():
            generator_outputs = generator.generate(**inputs)
            generated_text = generator_tokenizer.decode(generator_outputs[0], skip_special_tokens=True)

        # Update conversation history
        state["conversation"].append({"question": question, "answer": generated_text})

        return {"message": generated_text, "conversation": state["conversation"]}

    return {"error": "No question provided"}

# Create Gradio interface
with gr.Blocks() as demo:
    gr.Markdown("## Document Upload and Query System")

    with gr.Tab("Upload Files"):
        upload = gr.File(file_count="multiple", label="Upload PDF or DOCX files")
        upload_button = gr.Button("Upload")
        upload_output = gr.Textbox()
        upload_button.click(fn=upload_files, inputs=upload, outputs=upload_output)

    with gr.Tab("Query"):
        query = gr.Textbox(label="Enter your query")
        query_button = gr.Button("Search")
        query_output = gr.Textbox()
        query_button.click(fn=process_and_query, inputs=[query], outputs=query_output)

demo.launch()