File size: 6,486 Bytes
69dba80
07ebfb1
0f57ece
07ebfb1
 
37b5da4
e1a5899
07ebfb1
5b11f8b
5aa1892
07ebfb1
311ebef
 
 
 
 
 
99d9b3e
07ebfb1
446a864
 
07ebfb1
f9285e5
5f56b9e
37b5da4
 
07ebfb1
 
6351056
0f57ece
07ebfb1
1c4706b
769dbd6
84d6345
983c638
1c4706b
ddb3a35
983c638
 
35af703
ecc7149
983c638
602514f
 
 
 
 
35af703
07ebfb1
0f57ece
 
 
 
1c97cba
0f57ece
 
6a3ae5e
37b5da4
 
 
 
 
 
 
 
 
 
 
 
 
 
6a3ae5e
37b5da4
0f57ece
6a3ae5e
37b5da4
6a3ae5e
 
 
 
 
 
0f57ece
37b5da4
 
 
 
 
 
 
 
 
 
5f56b9e
37b5da4
 
0f57ece
07ebfb1
 
 
 
 
 
 
 
 
e1a5899
f4d4476
99d9b3e
 
 
 
 
 
 
 
 
 
 
 
 
b9fdb45
e1a5899
07ebfb1
f4d4476
07ebfb1
0f57ece
07ebfb1
0f57ece
569a668
07ebfb1
f9285e5
6bf2e4b
81a1d8a
 
 
 
5610313
81a1d8a
 
 
0f57ece
 
 
 
 
5c6b453
5f56b9e
f9285e5
0f57ece
 
8913af2
0f57ece
 
7d283fd
99d9b3e
 
0f57ece
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6bf2e4b
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
import time
import os
import re

import torch
import torchaudio

import gradio as gr
import spaces
from transformers import AutoFeatureExtractor, AutoTokenizer, WhisperForConditionalGeneration, WhisperProcessor, pipeline
from huggingface_hub import model_info
try:
    import flash_attn
    FLASH_ATTENTION = True
except ImportError:
    FLASH_ATTENTION = False

import yt_dlp  # Added import for yt-dlp

MODEL_NAME = "NbAiLab/nb-whisper-large"
lang = "no"

logo_path = os.path.join(os.path.dirname(__file__), "Logo_2.png")

max_audio_length= 1 * 60

share = (os.environ.get("SHARE", "False")[0].lower() in "ty1") or None
auth_token = os.environ.get("AUTH_TOKEN") or True
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
print(f"Bruker enhet: {device}")

@spaces.GPU(duration=60 * 2)
def pipe(file, return_timestamps=False):
    asr = pipeline(
        task="automatic-speech-recognition",
        model=MODEL_NAME,
        chunk_length_s=28,
        device=device,
        token=auth_token,
        torch_dtype=torch.float16,
        model_kwargs={"attn_implementation": "flash_attention_2", "num_beams": 5} if FLASH_ATTENTION else {"attn_implementation": "sdpa", "num_beams": 5},
    )
    asr.model.config.forced_decoder_ids = asr.tokenizer.get_decoder_prompt_ids(
        language=lang,
        task="transcribe",
        no_timestamps=not return_timestamps,
    )
    return asr(file, return_timestamps=return_timestamps, batch_size=24)

def format_output(text):
    # Add a newline after ".", "!", ":", or "?" unless part of sequences like "..."
    text = re.sub(r'(?<!\.)[.!:?](?!\.)', lambda m: m.group() + '\n', text)
    # Ensure newline after sequences like "..." or other punctuation patterns
    text = re.sub(r'(\.{3,}|[.!:?])', lambda m: m.group() + '\n\n', text)
    return text

def transcribe(file, return_timestamps=False):
    waveform, sample_rate = torchaudio.load(file)
    audio_duration = waveform.size(1) / sample_rate  

    if audio_duration > MAX_AUDIO_LENGTH:
        # Trim the waveform to the first 30 minutes
        waveform = waveform[:, :int(MAX_AUDIO_LENGTH * sample_rate)]
        truncated_file = "truncated_audio.wav"
        torchaudio.save(truncated_file, waveform, sample_rate)
        file_to_transcribe = truncated_file
        truncated = True
    else:
        file_to_transcribe = file
        truncated = False
        
    if not return_timestamps:
        text = pipe(file_to_transcribe)["text"]
        formatted_text = format_output(text)
    else:
        chunks = pipe(file_to_transcribe, return_timestamps=True)["chunks"]
        text = []
        for chunk in chunks:
            start_time = time.strftime('%H:%M:%S', time.gmtime(chunk["timestamp"][0])) if chunk["timestamp"][0] is not None else "??:??:??"
            end_time = time.strftime('%H:%M:%S', time.gmtime(chunk["timestamp"][1])) if chunk["timestamp"][1] is not None else "??:??:??"
            line = f"[{start_time} -> {end_time}] {chunk['text']}"
            text.append(line)
        formatted_text = "\n".join(text)

    if truncated:
        disclaimer = (
            "\n\nDette er en demo. Det er ikke tillatt å bruke denne teksten i profesjonell sammenheng. "
            "Vi anbefaler at hvis du trenger å transkribere lengre opptak, så kjører du enten modellen lokalt "
            "eller sjekker denne siden for å se hvem som leverer løsninger basert på NB-Whisper: "
            "https://github.com/NbAiLab/nostram/blob/main/leverandorer.md"
        )
        formatted_text += f"<br><br><i>{disclaimer}</i>"
    
    formatted_text += "<br><br><i>Transkribert med NB-Whisper demo</i>"

    
    return formatted_text

def _return_yt_html_embed(yt_url):
    video_id = yt_url.split("?v=")[-1]
    HTML_str = (
        f'<center> <iframe width="500" height="320" src="https://www.youtube.com/embed/{video_id}"> </iframe>'
        " </center>"
    )
    return HTML_str

def yt_transcribe(yt_url, return_timestamps=False):
    html_embed_str = _return_yt_html_embed(yt_url)

    ydl_opts = {
        'format': 'bestaudio/best',
        'outtmpl': 'audio.%(ext)s',
        'postprocessors': [{
            'key': 'FFmpegExtractAudio',
            'preferredcodec': 'mp3',
            'preferredquality': '192',
        }],
        'quiet': True,
    }
    with yt_dlp.YoutubeDL(ydl_opts) as ydl:
        ydl.download([yt_url])

    text = transcribe("audio.mp3", return_timestamps=return_timestamps)

    return html_embed_str, text

# Lag Gradio-appen uten faner

demo = gr.Blocks()

with demo:
    with gr.Row():
        gr.HTML("<img src='file/Logo_2.png'>") 
        with gr.Column(scale=8):
            # Use Markdown for title and description
            gr.Markdown(
                """
                <h1 style="font-size: 3em;">NB-Whisper Demo</h1>
                """
            )

    mf_transcribe = gr.Interface(
        fn=transcribe,
        inputs=[
            gr.components.Audio(sources=['upload', 'microphone'], type="filepath"),
            gr.components.Checkbox(label="Inkluder tidsstempler"),
        ],
        outputs=gr.HTML(label="text"),
        
        description=(
            "Transkriber lange lydopptak fra mikrofon eller lydfiler med et enkelt klikk! Demoen bruker den fintunede"
            f" modellen [{MODEL_NAME}](https://huggingface.co/{MODEL_NAME}) og 🤗 Transformers til å transkribere lydfiler opp til 30 minutter."
        ),
        allow_flagging="never",
        #show_submit_button=False,
    )

    # Uncomment to add the YouTube transcription interface if needed
    # yt_transcribe_interface = gr.Interface(
    #     fn=yt_transcribe,
    #     inputs=[
    #         gr.components.Textbox(lines=1, placeholder="Lim inn URL til en YouTube-video her", label="YouTube URL"),
    #         gr.components.Checkbox(label="Inkluder tidsstempler"),
    #     ],
    #     examples=[["https://www.youtube.com/watch?v=mukeSSa5GKo"]],
    #     outputs=["html", "text"],
    #     title="Whisper Demo: Transkriber YouTube",
    #     description=(
    #         "Transkriber lange YouTube-videoer med et enkelt klikk! Demoen bruker den fintunede modellen:"
    #         f" [{MODEL_NAME}](https://huggingface.co/{MODEL_NAME}) og 🤗 Transformers til å transkribere lydfiler av"
    #         " vilkårlig lengde."
    #     ),
    #     allow_flagging="never",
    # )

# Start demoen uten faner
demo.launch(share=share, show_api=False,allowed_paths=["Logo_2.png"]).queue()