File size: 2,332 Bytes
c2864d3
 
91a018b
2ea3a36
 
03f0774
 
fcf5834
c2864d3
2ea3a36
fbe647d
 
2ea3a36
fbe647d
 
2ea3a36
fbe647d
 
 
 
2ea3a36
 
 
5020140
68d753f
 
 
 
 
 
 
 
fa58d25
68d753f
 
fa58d25
68d753f
2ea3a36
68d753f
 
 
fa58d25
 
 
392c31a
c2864d3
 
1379c69
 
 
 
 
 
 
 
 
 
 
91a018b
 
 
 
 
 
 
fbe647d
 
91a018b
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
from flask import Flask, request, jsonify
from transformers import pipeline
from transformers import AutoTokenizer, AutoModelForTokenClassification
import whisper
import os
import tempfile


app = Flask(__name__)

# Initialize Whisper model
whisper_model = whisper.load_model("small")  # Renamed variable

# Initialize Emotion Classifier
classifier = pipeline("text-classification", model="j-hartmann/emotion-english-distilroberta-base", return_all_scores=True)

# Initialize NER pipeline
ner_tokenizer = AutoTokenizer.from_pretrained("dslim/bert-base-NER")
ner_model = AutoModelForTokenClassification.from_pretrained("dslim/bert-base-NER")  # Renamed variable
ner_pipeline = pipeline("ner", model=ner_model, tokenizer=ner_tokenizer)  # Renamed variable


@app.route('/transcribe', methods=['POST'])
def transcribe():
    try:
        # Read the raw audio bytes
        audio_bytes = request.data  # Get raw bytes from request
        if not audio_bytes:
            return jsonify({"error": "No audio data provided"}), 400

        # Convert bytes to a file-like object
        audio_file = io.BytesIO(audio_bytes)

        # Transcribe the audio
        result = whisper_model.transcribe(audio_file)

        return jsonify({"text": result["text"]})

    except Exception as e:
        print("Error:", str(e))  # Log the error
        return jsonify({"error": "Internal Server Error", "details": str(e)}), 500


        
        
@app.route('/classify', methods=['POST'])
def classify():
    try:
        data = request.get_json()
        if 'text' not in data:
            return jsonify({"error": "Missing 'text' field"}), 400
        
        text = data['text']
        result = classifier(text)
        return jsonify(result)
    
    except Exception as e:
        return jsonify({"error": str(e)}), 500

@app.route('/ner', methods=['POST'])
def ner_endpoint():
    try:
        data = request.get_json()
        text = data.get("text", "")
        
        # Use the renamed ner_pipeline
        ner_results = ner_pipeline(text)
        
        words_and_entities = [
            {"word": result['word'], "entity": result['entity']} 
            for result in ner_results
        ]
        
        return jsonify({"entities": words_and_entities})
    except Exception as e:
        return jsonify({"error": str(e)}), 500