Spaces:
Running
Running
File size: 4,049 Bytes
c15480b 8ff3ba1 7abeff1 8c3e6c9 6c2499f 8ff3ba1 8c3e6c9 c616fef 8ff3ba1 c15480b 6b7575f 8ff3ba1 827a18f a0d334a 1b3feca 5cd743d 827a18f 6b5852a a0d334a 827a18f 6f6166a 156ce5d d9d5ef6 156ce5d 827a18f d9d5ef6 827a18f 6b2c99b 827a18f d9d5ef6 75d98e1 c547c8a b94b619 c547c8a b94b619 c547c8a b94b619 c547c8a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 |
import streamlit as st
from transformers import AutoTokenizer, AutoModelForTokenClassification, pipeline
# โหลด Tokenizer และ Model
model_name = "Nucha/Nucha_ITSkillNER_BERT"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForTokenClassification.from_pretrained(model_name)
# สร้าง NER Pipeline
ner_pipeline = pipeline("ner", model=model, tokenizer=tokenizer)
# UI ด้วย Streamlit
col1, col2, col3 = st.columns([4, 4, 4])
with col1:
st.header("Input")
default_text="""Job Description:
We are seeking a talented Software Engineer to join our dynamic team at Tech Innovations Inc. You will be responsible for designing, developing, and maintaining software applications that meet the needs of our clients.
Key Responsibilities:
Develop high-quality software design and architecture
Identify, prioritize, and execute tasks in the software development life cycle
Review and debug code
Collaborate with other developers and engineers to ensure software quality
Required Qualifications:
Bachelor’s degree in Computer Science or related field
Proven experience as a Software Engineer or similar role
Familiarity with Agile development methodologies
Proficiency in programming languages such as Java, Python, or C#
Strong problem-solving skills and the ability to work in a team
Preferred Qualifications:
"""
text = st.text_area("Enter text for NER analysis:", value=default_text, height=400, max_chars=None, key=None, help=None, placeholder=None)
analyze_button = st.button("Analyze")
st.write("""**Example Inputs:**
- Experience with cloud services (AWS, Azure)
- Knowledge of databases (SQL, NoSQL)
- Familiarity with front-end technologies (HTML, CSS, JavaScript)""")
with col2:
st.header("Result")
# ใช้ st.markdown กับ CSS เพื่อปรับขนาดฟอนต์
st.markdown("<span style='font-size: 14px;'>Press button [Analyze]</span>", unsafe_allow_html=True)
if analyze_button:
ner_results = ner_pipeline(text)
# Display results in a structured output block
if ner_results:
output_data = [{"Entity": entity['word'], "Label": entity['entity'], "Score": f"{entity['score']:.4f}"} for entity in ner_results]
st.table(output_data) # Display as a table
else:
st.write("No entities found.")
# ใช้ st.markdown กับ CSS เพื่อปรับขนาดฟอนต์
st.markdown("<span style='font-size: 14px;'>JSON</span>", unsafe_allow_html=True)
st.write(ner_results)
with col3:
# สร้าง NER Pipeline
ner_pipeline = pipeline("ner", model=model, tokenizer=tokenizer)
st.title("NER Annotation Tool")
st.write("Highlight Named Entities and display them in a structured format.")
def annotate_text(text):
ner_results = ner_pipeline(text)
# สร้าง Annotation Output
annotations = []
highlighted_text = text
for entity in ner_results:
word = entity['word']
entity_label = entity['entity']
score = round(entity['score'], 4)
# สร้าง Dictionary ของ Entity
annotations.append({"Entity": word, "Label": entity_label, "Score": score})
# Highlight คำที่เป็น Entity
highlighted_text = highlighted_text.replace(word, f'<mark style="background-color: yellow">{word} ({entity_label})</mark>')
return highlighted_text, annotations
text = st.text_area("Enter text for NER analysis:", height=200)
if st.button("Analyze"):
highlighted_text, entities = annotate_text(text)
# แสดงผลลัพธ์แบบ HTML
st.markdown(highlighted_text, unsafe_allow_html=True)
# แสดง Entities เป็น JSON
st.json(entities)
|