Spaces:
Running
Running
File size: 33,981 Bytes
cb919f0 c5a20a4 ea82e64 cb919f0 dc27384 717cd1f cb919f0 717cd1f cb919f0 81286e1 717cd1f 81286e1 717cd1f 81286e1 717cd1f 81286e1 717cd1f 81286e1 717cd1f 81286e1 717cd1f 81286e1 717cd1f 81286e1 cb919f0 81286e1 717cd1f 81286e1 717cd1f 81286e1 717cd1f dc27384 81286e1 717cd1f 81286e1 717cd1f cb919f0 81286e1 717cd1f 75bf974 81286e1 717cd1f e45083a 81286e1 717cd1f e45083a 81286e1 cb919f0 81286e1 717cd1f 81286e1 dc27384 81286e1 dc27384 81286e1 717cd1f dc27384 717cd1f dc27384 81286e1 717cd1f dc27384 717cd1f dc27384 81286e1 717cd1f dc27384 81286e1 dc27384 81286e1 dc27384 717cd1f 81286e1 dc27384 717cd1f dc27384 81286e1 717cd1f 81286e1 dc27384 717cd1f 81286e1 717cd1f dc27384 717cd1f dc27384 717cd1f dc27384 717cd1f dc27384 717cd1f dc27384 717cd1f 81286e1 cb919f0 dc27384 717cd1f 81286e1 717cd1f 81286e1 dc27384 717cd1f 81286e1 717cd1f dc27384 81286e1 717cd1f 81286e1 dc27384 81286e1 717cd1f dc27384 6f66243 dc27384 6f66243 81286e1 cb919f0 717cd1f 81286e1 cb919f0 717cd1f cb919f0 717cd1f dc27384 717cd1f 81286e1 717cd1f 109f11f dc27384 717cd1f 81286e1 6f66243 81286e1 717cd1f dc27384 81286e1 dc27384 717cd1f dc27384 717cd1f dc27384 81286e1 dc27384 6f66243 717cd1f 6f66243 dc27384 717cd1f dc27384 81286e1 717cd1f dc27384 717cd1f dc27384 717cd1f dc27384 717cd1f dc27384 717cd1f dc27384 717cd1f dc27384 717cd1f dc27384 6f66243 717cd1f dc27384 717cd1f dc27384 717cd1f dc27384 cb919f0 dc27384 717cd1f dc27384 6f66243 dc27384 6f66243 dc27384 717cd1f dc27384 717cd1f dc27384 717cd1f dc27384 6f66243 dc27384 81286e1 dc27384 6f66243 dc27384 6f66243 717cd1f 81286e1 717cd1f 81286e1 dc27384 717cd1f dc27384 81286e1 717cd1f 81286e1 dc27384 717cd1f 81286e1 717cd1f dc27384 717cd1f dc27384 6f66243 717cd1f 81286e1 717cd1f cb919f0 81286e1 dc27384 717cd1f cb919f0 717cd1f 81286e1 6f66243 717cd1f 6f66243 dc27384 6f66243 717cd1f 6f66243 dc27384 717cd1f dc27384 717cd1f 81286e1 cb919f0 dc27384 717cd1f 6f66243 717cd1f dc27384 81286e1 717cd1f dc27384 717cd1f dc27384 6f66243 717cd1f dc27384 81286e1 dc27384 717cd1f dc27384 717cd1f dc27384 717cd1f dc27384 717cd1f dc27384 717cd1f dc27384 717cd1f dc27384 717cd1f dc27384 717cd1f dc27384 717cd1f dc27384 717cd1f dc27384 717cd1f dc27384 717cd1f dc27384 6f66243 dc27384 717cd1f 6f66243 dc27384 717cd1f dc27384 717cd1f dc27384 717cd1f dc27384 6f66243 dc27384 717cd1f dc27384 717cd1f dc27384 717cd1f dc27384 717cd1f dc27384 717cd1f dc27384 717cd1f dc27384 717cd1f dc27384 6f66243 dc27384 cb919f0 717cd1f cb919f0 717cd1f dc27384 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 |
import gradio as gr
from huggingface_hub import InferenceClient
import os
import json
import base64
from PIL import Image
import io
import requests # Retained, though not directly used in the core logic shown for modification
from smolagents.mcp_client import MCPClient
ACCESS_TOKEN = os.getenv("HF_TOKEN")
print("Access token loaded.")
# Function to encode image to base64
def encode_image(image_path):
if not image_path:
print("No image path provided")
return None
try:
print(f"Encoding image from path: {image_path}")
# If it's already a PIL Image
if isinstance(image_path, Image.Image):
image = image_path
else:
# Try to open the image file
image = Image.open(image_path)
# Convert to RGB if image has an alpha channel (RGBA)
if image.mode == 'RGBA':
image = image.convert('RGB')
# Encode to base64
buffered = io.BytesIO()
image.save(buffered, format="JPEG")
img_str = base64.b64encode(buffered.getvalue()).decode("utf-8")
print("Image encoded successfully")
return img_str
except Exception as e:
print(f"Error encoding image: {e}")
return None
# Dictionary to store active MCP connections
mcp_connections = {}
def connect_to_mcp_server(server_url, server_name=None):
"""Connect to an MCP server and return available tools"""
if not server_url:
return None, "No server URL provided"
try:
# Create an MCP client and connect to the server
client = MCPClient({"url": server_url})
# Get available tools
tools = client.get_tools()
# Store the connection for later use
name = server_name or f"Server_{len(mcp_connections)}_{base64.urlsafe_b64encode(os.urandom(3)).decode()}" # Ensure unique name
mcp_connections[name] = {"client": client, "tools": tools, "url": server_url}
return name, f"Successfully connected to {name} with {len(tools)} available tools"
except Exception as e:
print(f"Error connecting to MCP server: {e}")
return None, f"Error connecting to MCP server: {str(e)}"
def list_mcp_tools(server_name):
"""List available tools for a connected MCP server"""
if server_name not in mcp_connections:
return "Server not connected"
tools = mcp_connections[server_name]["tools"]
tool_info = []
for tool in tools:
tool_info.append(f"- {tool.name}: {tool.description}")
if not tool_info:
return "No tools available for this server"
return "\n".join(tool_info)
def call_mcp_tool(server_name, tool_name, **kwargs):
"""Call a specific tool from an MCP server"""
if server_name not in mcp_connections:
return f"Server '{server_name}' not connected"
client = mcp_connections[server_name]["client"]
tools = mcp_connections[server_name]["tools"]
# Find the requested tool
tool = next((t for t in tools if t.name == tool_name), None)
if not tool:
return f"Tool '{tool_name}' not found on server '{server_name}'"
try:
# Call the tool with provided arguments
# The mcp_client's call_tool is expected to return the direct result from the tool
result = client.call_tool(tool_name, kwargs)
# The result here could be a string (e.g. base64 audio), a dict, or other types
# depending on the MCP tool. The `respond` function will handle formatting.
return result
except Exception as e:
print(f"Error calling MCP tool: {e}")
return f"Error calling MCP tool: {str(e)}"
def analyze_message_for_tool_call(message, active_mcp_servers, client_for_llm, model_to_use, system_message_for_llm):
"""Analyze a message to determine if an MCP tool should be called"""
# Skip analysis if message is empty
if not message or not message.strip():
return None, None
# Get information about available tools
tool_info = []
if active_mcp_servers:
for server_name in active_mcp_servers:
if server_name in mcp_connections:
server_tools = mcp_connections[server_name]["tools"]
for tool in server_tools:
tool_info.append({
"server_name": server_name,
"tool_name": tool.name,
"description": tool.description
})
if not tool_info:
return None, None
# Create a structured query for the LLM to analyze if a tool call is needed
tools_desc = []
for info in tool_info:
tools_desc.append(f"{info['server_name']}.{info['tool_name']}: {info['description']}")
tools_string = "\n".join(tools_desc)
# Updated prompt to guide LLM for TTS tool that returns base64
analysis_system_prompt = f"""You are an assistant that helps determine if a user message requires using an external tool.
Available tools:
{tools_string}
Your job is to:
1. Analyze the user's message.
2. Determine if they're asking to use one of the tools.
3. If yes, respond ONLY with a JSON object with "server_name", "tool_name", and "parameters".
4. If no, respond ONLY with the exact string "NO_TOOL_NEEDED".
Example 1 (for TTS that returns base64 audio):
User: "Please turn this text into speech: Hello world"
Response: {{"server_name": "kokoroTTS", "tool_name": "text_to_audio_b64", "parameters": {{"text": "Hello world", "speed": 1.0}}}}
Example 2 (for TTS with different speed):
User: "Read 'This is faster' at speed 1.5"
Response: {{"server_name": "kokoroTTS", "tool_name": "text_to_audio_b64", "parameters": {{"text": "This is faster", "speed": 1.5}}}}
Example 3 (general, non-tool):
User: "What is the capital of France?"
Response: NO_TOOL_NEEDED"""
try:
# Call the LLM to analyze the message
response = client_for_llm.chat_completion(
model=model_to_use,
messages=[
{"role": "system", "content": analysis_system_prompt},
{"role": "user", "content": message}
],
temperature=0.1, # Low temperature for deterministic tool selection
max_tokens=300
)
analysis = response.choices[0].message.content.strip()
print(f"Tool analysis raw response: '{analysis}'")
if analysis == "NO_TOOL_NEEDED":
return None, None
# Try to parse JSON directly from the response
try:
tool_call = json.loads(analysis)
return tool_call.get("server_name"), {
"tool_name": tool_call.get("tool_name"),
"parameters": tool_call.get("parameters", {})
}
except json.JSONDecodeError:
print(f"Failed to parse tool call JSON directly from: {analysis}")
# Fallback to extracting JSON if not a direct JSON response
json_start = analysis.find("{")
json_end = analysis.rfind("}") + 1
if json_start != -1 and json_end != 0 and json_end > json_start:
json_str = analysis[json_start:json_end]
try:
tool_call = json.loads(json_str)
return tool_call.get("server_name"), {
"tool_name": tool_call.get("tool_name"),
"parameters": tool_call.get("parameters", {})
}
except json.JSONDecodeError:
print(f"Failed to parse extracted tool call JSON: {json_str}")
return None, None
else:
print(f"No JSON object found in analysis: {analysis}")
return None, None
except Exception as e:
print(f"Error analyzing message for tool calls: {str(e)}")
return None, None
def respond(
message,
image_files,
history: list[tuple[str, str]],
system_message,
max_tokens,
temperature,
top_p,
frequency_penalty,
seed,
provider,
custom_api_key,
custom_model,
model_search_term,
selected_model,
mcp_enabled=False,
active_mcp_servers=None,
mcp_interaction_mode="Natural Language"
):
print(f"Received message: {message}")
print(f"Received {len(image_files) if image_files else 0} images")
# print(f"History: {history}") # Can be very verbose
print(f"System message: {system_message}")
print(f"Max tokens: {max_tokens}, Temperature: {temperature}, Top-P: {top_p}")
print(f"Frequency Penalty: {frequency_penalty}, Seed: {seed}")
print(f"Selected provider: {provider}")
print(f"Custom API Key provided: {bool(custom_api_key.strip())}")
print(f"Selected model (custom_model): {custom_model}")
print(f"Model search term: {model_search_term}")
print(f"Selected model from radio: {selected_model}")
print(f"MCP enabled: {mcp_enabled}")
print(f"Active MCP servers: {active_mcp_servers}")
print(f"MCP interaction mode: {mcp_interaction_mode}")
token_to_use = custom_api_key if custom_api_key.strip() != "" else ACCESS_TOKEN
if custom_api_key.strip() != "":
print("USING CUSTOM API KEY: BYOK token provided by user is being used for authentication")
else:
print("USING DEFAULT API KEY: Environment variable HF_TOKEN is being used for authentication")
client_for_llm = InferenceClient(token=token_to_use, provider=provider)
print(f"Hugging Face Inference Client initialized with {provider} provider.")
if seed == -1:
seed = None
model_to_use = custom_model.strip() if custom_model.strip() != "" else selected_model
print(f"Model selected for inference: {model_to_use}")
if mcp_enabled and message:
if message.startswith("/mcp"):
command_parts = message.split(" ", 3)
if len(command_parts) < 3:
yield "Invalid MCP command. Format: /mcp <server_name> <tool_name> [arguments_json]"
return
_, server_name, tool_name = command_parts[:3]
args_json_str = "{}" if len(command_parts) < 4 else command_parts[3]
try:
args_dict = json.loads(args_json_str)
result = call_mcp_tool(server_name, tool_name, **args_dict)
if "audio" in tool_name.lower() and "b64" in tool_name.lower() and isinstance(result, str):
audio_html = f'<audio controls src="data:audio/wav;base64,{result}"></audio>'
yield f"Executed {tool_name} from {server_name}.\n\nResult:\n{audio_html}"
elif isinstance(result, dict):
yield json.dumps(result, indent=2)
else:
yield str(result)
return # MCP command handled, exit
except json.JSONDecodeError:
yield f"Invalid JSON arguments: {args_json_str}"
return
except Exception as e:
yield f"Error executing MCP command: {str(e)}"
return
elif mcp_interaction_mode == "Natural Language" and active_mcp_servers:
server_name, tool_info = analyze_message_for_tool_call(
message,
active_mcp_servers,
client_for_llm,
model_to_use,
system_message # Original system message for context, LLM uses its own for analysis
)
if server_name and tool_info and tool_info.get("tool_name"):
try:
print(f"Calling tool via natural language: {server_name}.{tool_info['tool_name']} with parameters: {tool_info.get('parameters', {})}")
result = call_mcp_tool(server_name, tool_info['tool_name'], **tool_info.get('parameters', {}))
tool_display_name = tool_info['tool_name']
if "audio" in tool_display_name.lower() and "b64" in tool_display_name.lower() and isinstance(result, str) and len(result) > 100: # Heuristic for base64 audio
audio_html = f'<audio controls src="data:audio/wav;base64,{result}"></audio>'
yield f"I used the {tool_display_name} tool from {server_name} with your request.\n\nResult:\n{audio_html}"
elif isinstance(result, dict):
result_str = json.dumps(result, indent=2)
yield f"I used the {tool_display_name} tool from {server_name} with your request.\n\nResult:\n{result_str}"
else:
result_str = str(result)
yield f"I used the {tool_display_name} tool from {server_name} with your request.\n\nResult:\n{result_str}"
return # MCP tool call handled via natural language
except Exception as e:
print(f"Error executing MCP tool via natural language: {str(e)}")
yield f"I tried to use a tool but encountered an error: {str(e)}. I will try to respond without it."
# Fall through to normal LLM response if tool call fails
user_content = []
if message and message.strip():
user_content.append({"type": "text", "text": message})
if image_files and len(image_files) > 0:
for img_path in image_files:
if img_path is not None:
try:
encoded_image = encode_image(img_path)
if encoded_image:
user_content.append({
"type": "image_url",
"image_url": {"url": f"data:image/jpeg;base64,{encoded_image}"}
})
except Exception as e:
print(f"Error encoding image for user content: {e}")
if not user_content: # If message was empty and no images, or only MCP command handled
if not message.startswith("/mcp"): # Avoid yielding empty if it was an MCP command
yield "" # Or handle appropriately, maybe return if no content
return
augmented_system_message = system_message
if mcp_enabled and active_mcp_servers:
tool_desc_list = []
for server_name_active in active_mcp_servers:
if server_name_active in mcp_connections:
# Get tools for this specific server
# Assuming list_mcp_tools returns a string like "- tool1: desc1\n- tool2: desc2"
server_tools_str = list_mcp_tools(server_name_active)
if server_tools_str != "Server not connected" and server_tools_str != "No tools available for this server":
for line in server_tools_str.split('\n'):
if line.startswith("- "):
tool_desc_list.append(f"{server_name_active}.{line[2:]}") # e.g., kokoroTTS.text_to_audio_b64: Convert text...
if tool_desc_list:
mcp_tools_description_for_llm = "\n".join(tool_desc_list)
# This informs the main LLM about available tools for general conversation,
# distinct from the specialized analyzer LLM.
# The main LLM doesn't call tools directly but can use this info to guide the user.
if mcp_interaction_mode == "Command Mode":
augmented_system_message += f"\n\nYou have access to the following MCP tools which the user can invoke:\n{mcp_tools_description_for_llm}\n\nTo use these tools, the user can type a command in the format: /mcp <server_name> <tool_name> <arguments_json>"
else: # Natural Language
augmented_system_message += f"\n\nYou have access to the following MCP tools. The system will try to use them automatically if the user's request matches their capability:\n{mcp_tools_description_for_llm}\n\nIf the user asks to do something a tool can do, the system will attempt to use it. For example, if a 'text_to_audio_b64' tool is available, and the user says 'read this text aloud', the system will try to use that tool."
messages_for_llm = [{"role": "system", "content": augmented_system_message}]
print("Initial messages array constructed.")
for hist_user, hist_assistant in history:
# hist_user can be complex if it included images from MultimodalTextbox
# We need to reconstruct it properly for the LLM
current_hist_user_content = []
if isinstance(hist_user, dict) and 'text' in hist_user and 'files' in hist_user: # From MultimodalTextbox
if hist_user['text'] and hist_user['text'].strip():
current_hist_user_content.append({"type": "text", "text": hist_user['text']})
if hist_user['files']:
for img_file_path in hist_user['files']:
encoded_img = encode_image(img_file_path)
if encoded_img:
current_hist_user_content.append({
"type": "image_url",
"image_url": {"url": f"data:image/jpeg;base64,{encoded_img}"}
})
elif isinstance(hist_user, str): # Simple text history
current_hist_user_content.append({"type": "text", "text": hist_user})
if current_hist_user_content:
messages_for_llm.append({"role": "user", "content": current_hist_user_content})
if hist_assistant: # Assistant message is always text
# Check if assistant message was an HTML audio tag, if so, send a placeholder to LLM
if "<audio controls src=" in hist_assistant:
messages_for_llm.append({"role": "assistant", "content": "[Audio was played in response to the previous message]"})
else:
messages_for_llm.append({"role": "assistant", "content": hist_assistant})
messages_for_llm.append({"role": "user", "content": user_content})
print(f"Latest user message appended (content type: {type(user_content)})")
# print(f"Messages for LLM: {json.dumps(messages_for_llm, indent=2)}") # Very verbose
response_text = ""
print(f"Sending request to {provider} provider for general response.")
parameters = {
"max_tokens": max_tokens,
"temperature": temperature,
"top_p": top_p,
"frequency_penalty": frequency_penalty,
}
if seed is not None:
parameters["seed"] = seed
try:
stream = client_for_llm.chat_completion(
model=model_to_use,
messages=messages_for_llm,
stream=True,
**parameters
)
print("Streaming LLM response: ", end="", flush=True)
for chunk in stream:
if hasattr(chunk, 'choices') and len(chunk.choices) > 0:
if hasattr(chunk.choices[0], 'delta') and hasattr(chunk.choices[0].delta, 'content'):
token_text = chunk.choices[0].delta.content
if token_text:
print(token_text, end="", flush=True)
response_text += token_text
yield response_text
print() # Newline after streaming
except Exception as e:
print(f"Error during LLM inference: {e}")
response_text += f"\nError during LLM response generation: {str(e)}"
yield response_text
print("Completed LLM response generation.")
# GRADIO UI
with gr.Blocks(theme="Nymbo/Nymbo_Theme") as demo:
chatbot = gr.Chatbot(
height=600,
show_copy_button=True,
placeholder="Select a model and begin chatting. Now supports multiple inference providers, multimodal inputs, and MCP tools",
layout="panel",
show_label=False,
render=False # Delay rendering
)
print("Chatbot interface created.")
with gr.Row():
msg = gr.MultimodalTextbox(
placeholder="Type a message or upload images...",
show_label=False,
container=True, # Ensure it's a container for proper layout
scale=12,
file_types=["image"],
file_count="multiple",
sources=["upload"],
render=False # Delay rendering
)
# Render chatbot and message box after defining them
chatbot.render()
msg.render()
with gr.Accordion("Settings", open=False):
system_message_box = gr.Textbox(
value="You are a helpful AI assistant that can understand images and text.",
placeholder="You are a helpful assistant.",
label="System Prompt"
)
with gr.Row():
with gr.Column():
max_tokens_slider = gr.Slider(minimum=1, maximum=4096, value=512, step=1, label="Max tokens")
temperature_slider = gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature")
top_p_slider = gr.Slider(minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-P")
with gr.Column():
frequency_penalty_slider = gr.Slider(minimum=-2.0, maximum=2.0, value=0.0, step=0.1, label="Frequency Penalty")
seed_slider = gr.Slider(minimum=-1, maximum=65535, value=-1, step=1, label="Seed (-1 for random)")
providers_list = ["hf-inference", "cerebras", "together", "sambanova", "novita", "cohere", "fireworks-ai", "hyperbolic", "nebius"]
provider_radio = gr.Radio(choices=providers_list, value="hf-inference", label="Inference Provider")
byok_textbox = gr.Textbox(value="", label="BYOK (Bring Your Own Key)", info="Enter a custom Hugging Face API key here. If empty, only 'hf-inference' provider can be used with the default token.", placeholder="Enter your Hugging Face API token", type="password")
custom_model_box = gr.Textbox(value="", label="Custom Model", info="(Optional) Provide a Hugging Face model path. Overrides selected featured model.", placeholder="meta-llama/Llama-3.1-70B-Instruct")
model_search_box = gr.Textbox(label="Filter Models", placeholder="Search for a featured model...", lines=1)
models_list = [
"meta-llama/Llama-3.2-11B-Vision-Instruct", "meta-llama/Llama-3.1-405B-Instruct", "meta-llama/Llama-3.1-70B-Instruct", "meta-llama/Llama-3.1-8B-Instruct",
"meta-llama/Llama-3-70B-Instruct", "meta-llama/Llama-3-8B-Instruct",
"NousResearch/Hermes-3-Llama-3.1-8B", "NousResearch/Nous-Hermes-2-Mixtral-8x7B-DPO",
"mistralai/Mistral-Nemo-Instruct-2407", "mistralai/Mixtral-8x7B-Instruct-v0.1", "mistralai/Mistral-7B-Instruct-v0.3", "mistralai/Mistral-7B-Instruct-v0.2",
"Qwen/Qwen2.5-72B-Instruct", "Qwen/Qwen2-72B-Instruct", "Qwen/Qwen2-57B-A14B-Instruct", "Qwen/Qwen1.5-110B-Chat",
"microsoft/Phi-3-medium-128k-instruct", "microsoft/Phi-3-mini-128k-instruct", "microsoft/Phi-3-small-128k-instruct",
"google/gemma-2-27b-it", "google/gemma-2-9b-it",
"CohereForAI/c4ai-command-r-plus",
"deepseek-ai/DeepSeek-V2-Chat",
"Snowflake/snowflake-arctic-instruct"
] # Keeping your original list, just formatted for readability
featured_model_radio = gr.Radio(label="Select a featured model", choices=models_list, value="meta-llama/Llama-3.2-11B-Vision-Instruct", interactive=True)
gr.Markdown("[View all Text-to-Text models](https://huggingface.co/models?pipeline_tag=text-generation&sort=trending) | [View all multimodal models](https://huggingface.co/models?pipeline_tag=image-text-to-text&sort=trending)")
with gr.Accordion("MCP Settings", open=False):
mcp_enabled_checkbox = gr.Checkbox(label="Enable MCP Support", value=False, info="Enable Model Context Protocol support for external tools")
with gr.Row():
mcp_server_url = gr.Textbox(label="MCP Server URL", placeholder="https://your-mcp-server.hf.space/gradio_api/mcp/sse")
mcp_server_name = gr.Textbox(label="Server Name (Optional)", placeholder="e.g., kokoroTTS")
mcp_connect_button = gr.Button("Connect to MCP Server")
mcp_status = gr.Textbox(label="MCP Connection Status", placeholder="No MCP servers connected", interactive=False)
active_mcp_servers = gr.Dropdown(label="Active MCP Servers for Chat", choices=[], multiselect=True, info="Select which connected MCP servers to use")
mcp_mode = gr.Radio(label="MCP Interaction Mode", choices=["Natural Language", "Command Mode"], value="Natural Language", info="How to trigger MCP tools")
gr.Markdown("""
### MCP Interaction Modes
**Natural Language**: Describe what you want. E.g., "Convert 'Hello' to speech".
**Command Mode**: Use `/mcp <server_name> <tool_name> {"param": "value"}`. E.g., `/mcp kokoroTTS text_to_audio_b64 {"text": "Hello world"}`.
""")
chat_history_state = gr.State([]) # To store the actual history for the LLM
def filter_models_choices(search_term):
print(f"Filtering models with search term: {search_term}")
if not search_term: return gr.update(choices=models_list)
filtered = [m for m in models_list if search_term.lower() in m.lower()]
print(f"Filtered models: {filtered}")
return gr.update(choices=filtered if filtered else models_list, value=featured_model_radio.value if featured_model_radio.value in filtered else (filtered[0] if filtered else models_list[0]))
def update_custom_model_from_radio(selected_featured_model):
print(f"Featured model selected: {selected_featured_model}")
# This function now updates the custom_model_box.
# If you want the radio selection to BE the model_to_use unless custom_model_box has text,
# then custom_model_box should be cleared or its value used as override.
# For now, let's assume custom_model_box is an override.
# If you want the radio to directly feed into the selected_model parameter for respond(),
# then this function might not be needed or custom_model_box should be used as an override.
return selected_featured_model # This updates the custom_model_box with the radio selection.
def handle_connect_mcp_server(url, name_suggestion):
actual_name, status_msg = connect_to_mcp_server(url, name_suggestion)
all_server_names = list(mcp_connections.keys())
# Keep existing selections if possible
current_selection = active_mcp_servers.value if active_mcp_servers.value else []
new_selection = [s for s in current_selection if s in all_server_names]
if actual_name and actual_name not in new_selection : # Auto-select newly connected server
new_selection.append(actual_name)
return status_msg, gr.update(choices=all_server_names, value=new_selection)
# This function is called when the user submits a message.
# It updates the visual chatbot history and prepares the state for the bot.
def handle_user_message(user_input_dict, current_chat_history_state):
text_content = user_input_dict.get("text", "").strip()
files = user_input_dict.get("files", []) # List of file paths
# Add to visual history (chatbot component)
visual_history_additions = []
# Store for LLM (chat_history_state)
# We store the raw dict from MultimodalTextbox for user messages
# to correctly reconstruct for the LLM later.
current_chat_history_state.append([user_input_dict, None])
# For visual chatbot, create separate entries for text and images
if text_content:
visual_history_additions.append([text_content, None])
if files:
for file_path in files:
visual_history_additions.append([ (file_path,), None]) # Gradio Chatbot expects tuple for files
return visual_history_additions, current_chat_history_state
# This function is called after user message is processed.
# It calls the LLM and streams the response.
def handle_bot_response(
current_chat_history_state, # This is the state with the latest user message
sys_msg, max_tok, temp, top_p_val, freq_pen, seed_val, prov, api_key_val, cust_model,
search, selected_feat_model, mcp_on, active_servs, mcp_interact_mode
):
if not current_chat_history_state or current_chat_history_state[-1][1] is not None:
# User message not yet added or bot already responded
yield current_chat_history_state # Or some empty update
return
# The user message is the first element of the last item in chat_history_state
# It's a dict: {'text': '...', 'files': ['path1', ...]}
user_message_dict = current_chat_history_state[-1][0]
text_from_user_dict = user_message_dict.get("text", "")
files_from_user_dict = user_message_dict.get("files", [])
# History for LLM should exclude the current un-responded user message
history_for_llm = current_chat_history_state[:-1]
# Stream response from LLM
full_response = ""
for R in respond(
message=text_from_user_dict,
image_files=files_from_user_dict,
history=history_for_llm, # Pass history BEFORE current turn
system_message=sys_msg,
max_tokens=max_tok,
temperature=temp,
top_p=top_p_val,
frequency_penalty=freq_pen,
seed=seed_val,
provider=prov,
custom_api_key=api_key_val,
custom_model=cust_model,
model_search_term=search, # This might be redundant if featured_model_radio directly updates custom_model_box
selected_model=selected_feat_model, # This is the value from the radio
mcp_enabled=mcp_on,
active_mcp_servers=active_servs,
mcp_interaction_mode=mcp_interact_mode
):
full_response = R
# Update the last item in chat_history_state with bot's response
current_chat_history_state[-1][1] = full_response
# Update visual chatbot
# Need to reconstruct visual history from state
visual_history_update = []
for user_turn, bot_turn in current_chat_history_state:
# User turn processing
user_text_viz = user_turn.get("text", "")
user_files_viz = user_turn.get("files", [])
if user_text_viz:
visual_history_update.append([user_text_viz, None if bot_turn is None and user_turn == current_chat_history_state[-1][0] else bot_turn]) # Add text part
for f_path in user_files_viz:
visual_history_update.append([(f_path,), None if bot_turn is None and user_turn == current_chat_history_state[-1][0] else bot_turn]) # Add image part
# Bot turn processing if user turn was only text and no files
if not user_text_viz and not user_files_viz and user_text_viz == "" : # Should not happen with current logic
visual_history_update.append(["", bot_turn])
elif not user_files_viz and user_text_viz and bot_turn is not None and visual_history_update[-1][0] == user_text_viz :
visual_history_update[-1][1] = bot_turn # Assign bot response to the text part
yield visual_history_update, current_chat_history_state
# Event handlers
msg.submit(
handle_user_message,
[msg, chat_history_state],
[chatbot, chat_history_state], # Update visual chatbot and state
queue=True # Use queue for streaming
).then(
handle_bot_response,
[chat_history_state, system_message_box, max_tokens_slider, temperature_slider, top_p_slider,
frequency_penalty_slider, seed_slider, provider_radio, byok_textbox, custom_model_box,
model_search_box, featured_model_radio, mcp_enabled_checkbox, active_mcp_servers, mcp_mode],
[chatbot, chat_history_state] # Update visual chatbot and state again with bot response
).then(
lambda: gr.update(value={"text": "", "files": []}), # Clear MultimodalTextbox
None,
[msg],
queue=False # No queue for simple UI update
)
mcp_connect_button.click(
handle_connect_mcp_server,
[mcp_server_url, mcp_server_name],
[mcp_status, active_mcp_servers]
)
model_search_box.change(fn=filter_models_choices, inputs=model_search_box, outputs=featured_model_radio)
# Let radio button directly be the selected_model, custom_model_box is an override
# featured_model_radio.change(fn=update_custom_model_from_radio, inputs=featured_model_radio, outputs=custom_model_box)
def validate_provider_choice(api_key_val, current_provider_val):
if not api_key_val.strip() and current_provider_val != "hf-inference":
gr.Info("No custom API key provided. Only 'hf-inference' provider can be used. Switching to 'hf-inference'.")
return gr.update(value="hf-inference")
return gr.update() # No change needed if valid or key provided
byok_textbox.change(fn=validate_provider_choice, inputs=[byok_textbox, provider_radio], outputs=provider_radio)
provider_radio.change(fn=validate_provider_choice, inputs=[byok_textbox, provider_radio], outputs=provider_radio)
print("Gradio interface initialized.")
if __name__ == "__main__":
print("Launching the demo application.")
demo.queue().launch(show_api=False, mcp_server=False, share=os.environ.get("GRADIO_SHARE", "").lower() == "true") |