File size: 7,696 Bytes
d8c3a88
d2e3c7f
a6d253a
d2e3c7f
 
 
 
5099842
6c5c0ad
d2e3c7f
a6d253a
 
58027e2
5099842
4b219d0
58bf31d
75fd4bb
5099842
d831e83
d2e3c7f
 
 
1e82c8e
58bf31d
7822729
355b657
d2e3c7f
5099842
 
 
fc6b35d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b525450
 
fc6b35d
d290cdf
 
 
5099842
23376ad
5099842
 
d2e3c7f
5099842
 
 
 
 
 
 
 
 
 
 
 
 
58bf31d
d2e3c7f
5099842
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6a6fbcd
a6d253a
 
 
 
 
 
 
 
 
 
75fd4bb
5099842
 
a6d253a
 
 
 
 
 
5099842
 
7f36a98
75fd4bb
5099842
 
 
 
 
 
 
 
 
 
 
 
d2e3c7f
5099842
 
a6d253a
 
 
 
d2e3c7f
 
 
5e8e8f0
d2e3c7f
 
5099842
 
d2e3c7f
5099842
 
 
d2e3c7f
5099842
 
5e8e8f0
a6d253a
 
d2e3c7f
b10e9f4
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
import os
import gradio as gr
from huggingface_hub import HfApi, whoami
from langchain.document_loaders import PyPDFLoader
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain.embeddings import OpenAIEmbeddings
from langchain.vectorstores import FAISS
from langchain.chains import ConversationalRetrievalChain
from langchain.chat_models import ChatOpenAI
from langchain.memory import ConversationBufferMemory
from langchain.prompts import PromptTemplate


from langchain.prompts import PromptTemplate



openai_api_key = os.environ.get("OPENAI_API_KEY")
hf_api = HfApi()
class AdvancedPdfChatbot:
    def __init__(self, openai_api_key):
        os.environ["OPENAI_API_KEY"] = openai_api_key
        self.embeddings = OpenAIEmbeddings()
        self.text_splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=200)
        self.llm =  ChatOpenAI(temperature=0.5,model_name='gpt-4o',max_tokens=3000)
        
        self.memory = ConversationBufferMemory(memory_key="chat_history", return_messages=True)
        self.qa_chain = None
        self.pdf_path = None
        self.template = """
You are a file-based knowledge assistant that interacts with users like ChatGPT. Your primary source of knowledge comes from user-uploaded files, such as PDFs. You do not rely on general knowledge or the internet. Instead, you extract, analyze, and synthesize information directly from the content of the provided file(s).  
**1. Personality and Tone**  
- Be polite, clear, and professional.  
- Use formal, academic language when the context requires it.  
- Provide concise, well-structured responses, and maintain a helpful and supportive tone.  
**2. Core Capabilities**  
- Extract and summarize key information from the provided file.  
- Answer user questions based on the content of the file.  
- Provide in-depth analysis, explanations, and references to the file's content.  
- Suggest relevant sections, chapters, or pages where specific information can be found.  
- Offer guidance on how users can interpret and understand the file's contents.  
**3. Knowledge and Scope**  
- Your knowledge is limited to the content found in the uploaded file(s).  
- You should not answer questions unrelated to the file's content unless explicitly requested.  
- If a user asks a question that is not found in the file, inform them that the information is not available.  
**4. Interaction Rules**  
- Respond with specific references to the document's content, including page numbers, sections, or headings, if available.  
- If the user asks for clarification, politely request more details.  
- Provide short, clear explanations for user queries, but be ready to offer more depth if asked.  
- Never "make up" information. If something is not in the file, clearly state that it cannot be found.  
**5. Context Awareness**  
- Remember the content of the file for the duration of the session.  
- Use file-specific knowledge to provide logical and evidence-backed responses.  
- If multiple files are uploaded, clarify which file is being referenced and specify which file the information is from.  
**6. Technical Details**  
- Summarize content into concise answers and organize information using bullet points, lists, or structured paragraphs.  
- If asked to provide a summary, focus on key points, main arguments, and essential takeaways.  
- When a user asks for a section or heading, search for relevant text within the file.  
- Do not offer answers beyond the scope of the file, and avoid guessing.  
**7. Example Usage**  
User: "Can you summarize the main argument from the introduction of the file?"  
Response: "Sure! The introduction discusses [key points] and highlights the central argument that [main idea]. This can be found on page 2 under the heading 'Introduction'."  
User: "Where can I find the definition of 'symbolic interactionism' in the document?"  
Response: "The definition of 'symbolic interactionism' appears on page 12 under the subheading 'Key Theoretical Concepts'."  
User: "Explain the concept of 'cognitive dissonance' as it is presented in the document."  
Response: "In the document, 'cognitive dissonance' is defined as [definition from the file]. It appears in the context of [brief explanation] and can be found on page 15 under the section 'Theoretical Foundations'."  

NOTE : DESCRIBE/SUMMARY should always return the overall summary of the documents in well documented and descriptions of the topic in great details.
**End of Prompt**
        Context: {context}
        Question: {question}
        Answer:
        """
        
        self.prompt = PromptTemplate(template=self.template, input_variables=["context", "question"])

    def load_and_process_pdf(self, pdf_path):
        loader = PyPDFLoader(pdf_path)
        documents = loader.load()
        texts = self.text_splitter.split_documents(documents)
        self.db = FAISS.from_documents(texts, self.embeddings)
        self.pdf_path = pdf_path
        self.setup_conversation_chain()

    def setup_conversation_chain(self):
        self.qa_chain = ConversationalRetrievalChain.from_llm(
            self.llm,
            retriever=self.db.as_retriever(),
            memory=self.memory,
            combine_docs_chain_kwargs={"prompt": self.prompt}
        )

    def chat(self, query):
        if not self.qa_chain:
            return "Please upload a PDF first."
        result = self.qa_chain({"question": query})
        return result['answer']

    def get_pdf_path(self):
        # Return the stored PDF path
        if self.pdf_path:
            return self.pdf_path
        else:
            return "No PDF uploaded yet."

# Initialize the chatbot
pdf_chatbot = AdvancedPdfChatbot(openai_api_key)

def get_user_folder():
    try:
        user_info = whoami()
        username = user_info['name']
        user_folder = f"user_data/{username}"
        os.makedirs(user_folder, exist_ok=True)
        return user_folder
    except Exception:
        return None

def upload_pdf(pdf_file):
    if pdf_file is None:
        return "Please upload a PDF file."
    user_folder = get_user_folder()
    if user_folder is None:
        return "Please log in to upload a PDF."
    file_path = os.path.join(user_folder, pdf_file.name)
    with open(file_path, "wb") as f:
        f.write(pdf_file.read())
    pdf_chatbot.load_and_process_pdf(file_path)
    return file_path

def respond(message, history):
    bot_message = pdf_chatbot.chat(message)
    history.append((message, bot_message))
    return "", history

def clear_chatbot():
    pdf_chatbot.memory.clear()
    return []

def get_pdf_path():
    return pdf_chatbot.get_pdf_path()

# Create the Gradio interface
with gr.Blocks() as demo:
    gr.Markdown("# PDF Chatbot")
    
    with gr.Row():
        login_button = gr.LoginButton()
        user_info = gr.Markdown()
    
    with gr.Row():
        pdf_upload = gr.File(label="Upload PDF", file_types=[".pdf"])
        upload_button = gr.Button("Process PDF")

    upload_status = gr.Textbox(label="Upload Status")
    upload_button.click(upload_pdf, inputs=[pdf_upload], outputs=[upload_status])
    path_button = gr.Button("Get PDF Path")
    pdf_path_display = gr.Textbox(label="Current PDF Path")
    chatbot_interface = gr.Chatbot()
    msg = gr.Textbox()
    clear = gr.Button("Clear")

    msg.submit(respond, inputs=[msg, chatbot_interface], outputs=[msg, chatbot_interface])
    clear.click(clear_chatbot, outputs=[chatbot_interface])
    path_button.click(get_pdf_path, outputs=[pdf_path_display])

    demo.load(lambda: gr.update(visible=True), outputs=[user_info], inputs=None)

if __name__ == "__main__":
    demo.launch()