File size: 21,442 Bytes
19739ea
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c39d038
19739ea
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
14e0c9e
19739ea
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
14e0c9e
 
 
 
 
 
 
 
 
 
19739ea
 
 
 
 
 
 
 
 
 
 
 
27ce43c
19739ea
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
95ca499
 
1e7a57d
95ca499
 
 
 
c947ea7
 
5ec7b71
 
1e7a57d
892745c
 
 
 
1e7a57d
c947ea7
1e7a57d
 
 
 
 
c947ea7
1e7a57d
 
 
 
 
c947ea7
892745c
1e7a57d
892745c
 
 
 
1e7a57d
1c73b9c
 
 
 
1e7a57d
 
 
741a8ce
1b5e3e9
741a8ce
 
 
1e7a57d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
741a8ce
1e7a57d
 
 
 
741a8ce
1b5e3e9
741a8ce
 
 
1c73b9c
1e7a57d
 
 
 
892745c
1e7a57d
 
 
95ca499
c947ea7
 
 
 
19739ea
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
# app.py

import os
import pandas as pd
import chardet
import logging
import gradio as gr
import json
import hashlib
import numpy as np  # ADDED for easy array handling
from typing import Optional, List, Tuple, ClassVar, Dict

from sentence_transformers import SentenceTransformer, util, CrossEncoder
from langchain.llms.base import LLM
import google.generativeai as genai

# Import smolagents components
from smolagents import CodeAgent, LiteLLMModel, DuckDuckGoSearchTool, ManagedAgent, HfApiModel

###############################################################################
# 1) Logging Setup
###############################################################################
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger("Daily Wellness AI")

###############################################################################
# 2) API Key Handling and Enhanced GeminiLLM Class
###############################################################################
def clean_api_key(key: str) -> str:
    """Remove non-ASCII characters and strip whitespace from the API key."""
    return ''.join(c for c in key if ord(c) < 128).strip()

# Load the GEMINI API key from environment variables
gemini_api_key = os.environ.get("GEMINI_API_KEY")

if not gemini_api_key:
    logger.error("GEMINI_API_KEY environment variable not set.")
    raise EnvironmentError("Please set the GEMINI_API_KEY environment variable.")

gemini_api_key = clean_api_key(gemini_api_key)
logger.info("GEMINI API Key loaded successfully.")

# Configure Google Generative AI
try:
    genai.configure(api_key=gemini_api_key)
    logger.info("Configured Google Generative AI with provided API key.")
except Exception as e:
    logger.error(f"Failed to configure Google Generative AI: {e}")
    raise e

class GeminiLLM(LLM):
    model_name: ClassVar[str] = "gemini-2.0-flash-exp"
    temperature: float = 0.7
    top_p: float = 0.95
    top_k: int = 40
    max_tokens: int = 2048

    @property
    def _llm_type(self) -> str:
        return "custom_gemini"

    def _call(self, prompt: str, stop: Optional[List[str]] = None) -> str:
        generation_config = {
            "temperature": self.temperature,
            "top_p": self.top_p,
            "top_k": self.top_k,
            "max_output_tokens": self.max_tokens,
        }

        try:
            logger.debug(f"Initializing GenerativeModel with config: {generation_config}")
            model = genai.GenerativeModel(
                model_name=self.model_name,
                generation_config=generation_config,
            )
            logger.debug("GenerativeModel initialized successfully.")

            chat_session = model.start_chat(history=[])
            logger.debug("Chat session started.")

            # Send the prompt as plain text
            response = chat_session.send_message(prompt)
            logger.debug(f"Prompt sent to model: {prompt}")
            logger.debug(f"Raw response received: {response.text}")

            return response.text
        except Exception as e:
            logger.error(f"Error generating response with GeminiLLM: {e}")
            logger.debug("Exception details:", exc_info=True)
            raise e

# Instantiate the GeminiLLM globally
llm = GeminiLLM()

###############################################################################
# 3) CSV Loading and Processing
###############################################################################
def load_csv(file_path: str):
    try:
        if not os.path.isfile(file_path):
            logger.error(f"CSV file does not exist: {file_path}")
            return [], []
        
        with open(file_path, 'rb') as f:
            result = chardet.detect(f.read())
            encoding = result['encoding']

        data = pd.read_csv(file_path, encoding=encoding)
        if 'Question' not in data.columns or 'Answers' not in data.columns:
            raise ValueError("CSV must contain 'Question' and 'Answers' columns.")
        data = data.dropna(subset=['Question', 'Answers'])

        logger.info(f"Loaded {len(data)} entries from {file_path}")
        return data['Question'].tolist(), data['Answers'].tolist()
    except Exception as e:
        logger.error(f"Error loading CSV: {e}")
        return [], []

# Path to your CSV file (ensure 'AIChatbot.csv' is in the repository)
csv_file_path = "AIChatbot.csv"
corpus_questions, corpus_answers = load_csv(csv_file_path)
if not corpus_questions:
    raise ValueError("Failed to load the knowledge base.")

###############################################################################
# 4) Sentence Embeddings & Cross-Encoder
###############################################################################
embedding_model_name = "sentence-transformers/multi-qa-mpnet-base-dot-v1"
try:
    embedding_model = SentenceTransformer(embedding_model_name)
    logger.info(f"Loaded embedding model: {embedding_model_name}")
except Exception as e:
    logger.error(f"Failed to load embedding model: {e}")
    raise e

try:
    question_embeddings = embedding_model.encode(corpus_questions, convert_to_tensor=True)
    logger.info("Encoded question embeddings successfully.")
except Exception as e:
    logger.error(f"Failed to encode question embeddings: {e}")
    raise e

cross_encoder_name = "cross-encoder/ms-marco-MiniLM-L-6-v2"
try:
    cross_encoder = CrossEncoder(cross_encoder_name)
    logger.info(f"Loaded cross-encoder model: {cross_encoder_name}")
except Exception as e:
    logger.error(f"Failed to load cross-encoder model: {e}")
    raise e

###############################################################################
# 5) Retrieval + Re-Ranking
###############################################################################
class EmbeddingRetriever:
    def __init__(self, questions, answers, embeddings, model, cross_encoder):
        self.questions = questions
        self.answers = answers
        self.embeddings = embeddings
        self.model = model
        self.cross_encoder = cross_encoder

    def retrieve(self, query: str, top_k: int = 3):
        try:
            query_embedding = self.model.encode(query, convert_to_tensor=True)
            scores = util.pytorch_cos_sim(query_embedding, self.embeddings)[0].cpu().tolist()
            scored_data = sorted(zip(self.questions, self.answers, scores), key=lambda x: x[2], reverse=True)[:top_k]

            cross_inputs = [[query, candidate[0]] for candidate in scored_data]
            cross_scores = self.cross_encoder.predict(cross_inputs)

            reranked = sorted(zip(scored_data, cross_scores), key=lambda x: x[1], reverse=True)
            final_retrieved = [(entry[0][1], entry[1]) for entry in reranked]
            logger.debug(f"Retrieved and reranked answers: {final_retrieved}")
            return final_retrieved
        except Exception as e:
            logger.error(f"Error during retrieval: {e}")
            logger.debug("Exception details:", exc_info=True)
            return []

retriever = EmbeddingRetriever(corpus_questions, corpus_answers, question_embeddings, embedding_model, cross_encoder)

###############################################################################
# 6) Sanity Check Tool
###############################################################################
class QuestionSanityChecker:
    def __init__(self, llm: GeminiLLM):
        self.llm = llm

    def is_relevant(self, question: str) -> bool:
        prompt = (
            f"You are an assistant that determines whether a question is relevant to daily wellness.\n\n"
            f"Question: {question}\n\n"
            f"Is the above question relevant to daily wellness? Respond with 'Yes' or 'No' only."
        )
        try:
            response = self.llm._call(prompt)
            is_yes = 'yes' in response.lower()
            is_no = 'no' in response.lower()
            logger.debug(f"Sanity check response: '{response}', interpreted as is_yes={is_yes}, is_no={is_no}")
            if is_yes and not is_no:
                return True
            elif is_no and not is_yes:
                return False
            else:
                # Ambiguous response
                logger.warning(f"Sanity check ambiguous response: '{response}'. Defaulting to 'No'.")
                return False
        except Exception as e:
            logger.error(f"Error in sanity check: {e}")
            logger.debug("Exception details:", exc_info=True)
            return False

# Instantiate the sanity checker globally
sanity_checker = QuestionSanityChecker(llm)

###############################################################################
# 7) smolagents Integration: GROQ Model and Web Search
###############################################################################
# Initialize the smolagents' LiteLLMModel with GROQ model
smol_model = HfApiModel()

# Instantiate the DuckDuckGo search tool
search_tool = DuckDuckGoSearchTool()

# Create the web agent with the search tool
web_agent = CodeAgent(
    tools=[search_tool],
    model=smol_model
)

# Define the managed web agent
managed_web_agent = ManagedAgent(
    agent=web_agent,
    name="web_search",
    description="Runs a web search for you. Provide your query as an argument."
)

# Create the manager agent with managed web agent and additional tools if needed
manager_agent = CodeAgent(
    tools=[],  # Add additional tools here if required
    model=smol_model,
    managed_agents=[managed_web_agent]
)

###############################################################################
# 8) Answer Expansion
###############################################################################
class AnswerExpander:
    def __init__(self, llm: GeminiLLM):
        self.llm = llm

    def expand(self, query: str, retrieved_answers: List[str], detail: bool = False) -> str:
        """
        Synthesize answers into a single cohesive response.
        If detail=True, provide a more detailed response.
        """
        try:
            reference_block = "\n".join(
                f"- {idx+1}) {ans}" for idx, ans in enumerate(retrieved_answers, start=1)
            )

            # ADDED: More elaboration if detail=True
            detail_instructions = (
                "Provide a thorough, in-depth explanation, adding relevant tips and context, "
                "while remaining creative and brand-aligned. "  
                if detail else
                "Provide a concise response in no more than 4 sentences."
            )

            prompt = (
                f"You are Daily Wellness AI, a friendly wellness expert. Below are multiple "
                f"potential answers retrieved from a local knowledge base. You have a user question.\n\n"
                f"Question: {query}\n\n"
                f"Retrieved Answers:\n{reference_block}\n\n"
                f"Please synthesize these references into a single cohesive, creative, and brand-aligned response. "
                f"{detail_instructions} "
                f"End with a short inspirational note.\n\n"
                "Disclaimer: This is general wellness information, not a substitute for professional medical advice."
            )

            logger.debug(f"Generated prompt for answer expansion: {prompt}")
            response = self.llm._call(prompt)
            logger.debug(f"Expanded answer: {response}")
            return response.strip()
        except Exception as e:
            logger.error(f"Error expanding answer: {e}")
            logger.debug("Exception details:", exc_info=True)
            return "Sorry, an error occurred while generating a response."

answer_expander = AnswerExpander(llm)

###############################################################################
# 9) Persistent Cache (ADDED)
###############################################################################
CACHE_FILE = "query_cache.json"
SIMILARITY_THRESHOLD_CACHE = 0.8  # Adjust for how close a query must be to reuse cache

def load_cache() -> Dict:
    """Load the cache from the local JSON file."""
    if os.path.isfile(CACHE_FILE):
        try:
            with open(CACHE_FILE, "r", encoding="utf-8") as f:
                return json.load(f)
        except Exception as e:
            logger.error(f"Failed to load cache file: {e}")
            return {}
    return {}

def save_cache(cache_data: Dict):
    """Save the cache dictionary to a local JSON file."""
    try:
        with open(CACHE_FILE, "w", encoding="utf-8") as f:
            json.dump(cache_data, f, ensure_ascii=False, indent=2)
    except Exception as e:
        logger.error(f"Failed to save cache file: {e}")

def compute_hash(text: str) -> str:
    """Compute a simple hash for the text to handle duplicates in a consistent way."""
    return hashlib.md5(text.encode("utf-8")).hexdigest()

# ADDED: Load cache at startup
cache_store = load_cache()

###############################################################################
# 9.1) Utility to attempt cached retrieval (ADDED)
###############################################################################
def get_cached_answer(query: str) -> Optional[str]:
    """
    Returns a cached answer if there's a very similar query in the cache.
    We'll compare embeddings to find if a stored query is above threshold.
    """
    if not cache_store:
        return None

    # Compute embedding for the incoming query
    query_embedding = embedding_model.encode(query, convert_to_tensor=True)

    # Check all cached items
    best_score = 0.0
    best_answer = None

    for cached_q, cache_data in cache_store.items():
        stored_embedding = np.array(cache_data["embedding"], dtype=np.float32)
        score = util.pytorch_cos_sim(query_embedding, stored_embedding)[0].item()
        if score > best_score:
            best_score = score
            best_answer = cache_data["answer"]

    if best_score >= SIMILARITY_THRESHOLD_CACHE:
        logger.info(f"Cache hit! Similarity: {best_score:.2f}, returning cached answer.")
        return best_answer
    return None

def store_in_cache(query: str, answer: str):
    """
    Store a query-answer pair in the cache with the query's embedding.
    """
    query_embedding = embedding_model.encode(query, convert_to_tensor=True).cpu().tolist()
    cache_key = compute_hash(query)
    cache_store[cache_key] = {
        "query": query,
        "answer": answer,
        "embedding": query_embedding
    }
    save_cache(cache_store)

###############################################################################
# 10) Query Handling
###############################################################################
def handle_query(query: str, detail: bool = False) -> str:
    """
    Main function to process the query.
    :param query: The user's question.
    :param detail: Whether the user wants a more detailed response.
    :return: Response string from Daily Wellness AI.
    """
    if not query or not isinstance(query, str) or len(query.strip()) == 0:
        return "Please provide a valid question."

    try:
        # 1) Sanity Check: Determine if the question is relevant to daily wellness
        is_relevant = sanity_checker.is_relevant(query)
        if not is_relevant:
            return "Your question seems out of context or not related to daily wellness. Please ask a wellness-related question."

        # 2) Proceed with retrieval from the knowledge base
        retrieved = retriever.retrieve(query)

        # 3) Check the cache
        cached_answer = get_cached_answer(query)

        # 4) If no retrieved data from the knowledge base
        if not retrieved:
            # If we do have a cached answer, return it
            if cached_answer:
                logger.info("No relevant entries found in knowledge base. Returning cached answer.")
                return cached_answer
            # Otherwise, no KB results and no cache => no answer
            return "I'm sorry, I couldn't find an answer to your question."

        # 5) We have retrieved data; let's check for similarity threshold
        top_score = retrieved[0][1]  # Assuming the list is sorted descending
        similarity_threshold = 0.3  # Adjust this threshold based on empirical results

        if top_score < similarity_threshold:
            # (Low similarity) Perform web search using manager_agent
            logger.info("Similarity score below threshold. Performing web search.")
            web_search_response = manager_agent.run(query)
            logger.debug(f"Web search response: {web_search_response}")

            # Combine any cached answer (if it exists) with the web result
            if cached_answer:
                blend_prompt = (
                    f"Combine the following previous answer with the new web results to create a more creative and accurate response. "
                    f"Do not include any of the previous prompt or instructions in your response. "
                    f"Add positivity and conclude with a short inspirational note.\n\n"
                    f"Previous Answer:\n{cached_answer}\n\n"
                    f"Web Results:\n{web_search_response}"
                )
                final_answer = llm._call(blend_prompt).strip()
            else:
                # If no cache, just return the web response
                final_answer = (
                    f"**Daily Wellness AI**\n\n"
                    f"{web_search_response}\n\n"
                    "Disclaimer: This information is retrieved from the web and is not a substitute for professional medical advice.\n\n"
                    "Wishing you a calm and wonderful day!"
                )

            # Store in cache
            store_in_cache(query, final_answer)
            return final_answer

        # 6) If similarity is sufficient, we will finalize an answer from the knowledge base
        responses = [ans for ans, score in retrieved]

        # 6a) If we have a cached answer, let's blend it with the new knowledge base data
        if cached_answer:
            blend_prompt = (
                f"Combine the previous answer with the newly retrieved answers to enhance creativity and accuracy. "
                f"Do not include any of the previous prompt or instructions in your response. "
                f"Add new insights, creativity, and conclude with a short inspirational note.\n\n"
                f"Previous Answer:\n{cached_answer}\n\n"
                f"New Retrieved Answers:\n" + "\n".join(f"- {r}" for r in responses)
            )
            final_answer = llm._call(blend_prompt).strip()
        else:
            # 6b) No cache => proceed with normal expansions
            final_answer = answer_expander.expand(query, responses, detail=detail)

        # 7) Store new or blended answer in cache
        store_in_cache(query, final_answer)
        return final_answer

    except Exception as e:
        logger.error(f"Error handling query: {e}")
        logger.debug("Exception details:", exc_info=True)
        return "An error occurred while processing your request."


###############################################################################
# 11) Gradio Interface
###############################################################################
def gradio_interface(query: str, detail: bool):
    """
    Gradio interface function that optionally takes a detail parameter for longer responses.
    """
    try:
        response = handle_query(query, detail=detail)
        formatted_response = response  # Response is already formatted
        return formatted_response
    except Exception as e:
        logger.error(f"Error in Gradio interface: {e}")
        logger.debug("Exception details:", exc_info=True)
        return "**An error occurred while processing your request. Please try again later.**"

# ADDED: We now have a checkbox for detail in the Gradio UI
interface = gr.Interface(
    fn=gradio_interface,
    inputs=[
        gr.Textbox(
            lines=2,
            placeholder="e.g., What is box breathing?",
            label="Ask Daily Wellness AI"
        ),
        gr.Checkbox(
            label="In-Depth Answer?",
            value=False,
            info="Check for a longer, more detailed response."
        )
    ],
    outputs=gr.Markdown(label="Answer from Daily Wellness AI"),
    title="Daily Wellness AI",
    description="Ask wellness-related questions and receive synthesized, creative answers. Optionally request a more in-depth response.",
    theme="default",
    examples=[
        ["What is box breathing and how does it help reduce anxiety?", True],
        ["Provide a daily wellness schedule incorporating box breathing techniques.", False],
        ["What are some tips for maintaining good posture while working at a desk?", True],
        ["Who is the CEO of Hugging Face?", False]  # Example of an out-of-context question
    ],
    allow_flagging="never"
)

###############################################################################
# 12) Launch Gradio
###############################################################################
if __name__ == "__main__":
    try:
        # For Hugging Face Spaces, set share=True to create a public link
        interface.launch(server_name="0.0.0.0", server_port=7860, debug=False, share=True)
    except Exception as e:
        logger.error(f"Failed to launch Gradio interface: {e}")
        logger.debug("Exception details:", exc_info=True)