Spaces:
Sleeping
Sleeping
File size: 5,615 Bytes
be3a2ca a928ae7 dc53a20 a928ae7 dc53a20 a928ae7 bbe1084 be3a2ca a244d5b a928ae7 dc53a20 243eb87 dc53a20 bbe1084 a928ae7 dc53a20 a928ae7 dc53a20 a928ae7 bbe1084 dc53a20 b2cfabe dc53a20 b2cfabe dc53a20 a928ae7 dc53a20 a928ae7 dc53a20 a928ae7 dc53a20 b2cfabe dc53a20 b2cfabe dc53a20 b2cfabe c5e2057 b2cfabe dc53a20 c5e2057 dc53a20 bbe1084 a928ae7 b2cfabe dc53a20 c5e2057 dc53a20 c5e2057 dc53a20 c5e2057 a244d5b c5e2057 a928ae7 dc53a20 4314dbc dc53a20 4314dbc dc53a20 4314dbc 672c572 bbe1084 dc53a20 4314dbc 672c572 4314dbc d7d0c24 dc53a20 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 |
from fastapi import FastAPI
import os
import pymupdf # PyMuPDF
from pptx import Presentation
from sentence_transformers import SentenceTransformer
import torch
from transformers import CLIPProcessor, CLIPModel
from PIL import Image
import chromadb
import numpy as np
from sklearn.decomposition import PCA
app = FastAPI()
# Initialize ChromaDB
client = chromadb.PersistentClient(path="/data/chroma_db")
collection = client.get_or_create_collection(name="knowledge_base")
# File Paths
pdf_file = "Sutures and Suturing techniques.pdf"
pptx_file = "impalnt 1.pptx"
# Initialize Embedding Models
text_model = SentenceTransformer('all-MiniLM-L6-v2')
model = CLIPModel.from_pretrained("openai/clip-vit-base-patch32")
processor = CLIPProcessor.from_pretrained("openai/clip-vit-base-patch32")
# Image Storage Folder
IMAGE_FOLDER = "/data/extracted_images"
os.makedirs(IMAGE_FOLDER, exist_ok=True)
# Extract Text from PDF
def extract_text_from_pdf(pdf_path):
try:
doc = pymupdf.open(pdf_path)
text = " ".join(page.get_text() for page in doc)
return text.strip() if text else None
except Exception as e:
print(f"Error extracting text from PDF: {e}")
return None
# Extract Text from PPTX
def extract_text_from_pptx(pptx_path):
try:
prs = Presentation(pptx_path)
text = " ".join(
shape.text for slide in prs.slides for shape in slide.shapes if hasattr(shape, "text")
)
return text.strip() if text else None
except Exception as e:
print(f"Error extracting text from PPTX: {e}")
return None
# Extract Images from PDF
def extract_images_from_pdf(pdf_path):
try:
doc = pymupdf.open(pdf_path)
images = []
for i, page in enumerate(doc):
for img_index, img in enumerate(page.get_images(full=True)):
xref = img[0]
image = doc.extract_image(xref)
img_path = f"{IMAGE_FOLDER}/pdf_image_{i}_{img_index}.{image['ext']}"
with open(img_path, "wb") as f:
f.write(image["image"])
images.append(img_path)
return images
except Exception as e:
print(f"Error extracting images from PDF: {e}")
return []
# Extract Images from PPTX
def extract_images_from_pptx(pptx_path):
try:
images = []
prs = Presentation(pptx_path)
for i, slide in enumerate(prs.slides):
for shape in slide.shapes:
if shape.shape_type == 13:
img_path = f"{IMAGE_FOLDER}/pptx_image_{i}.{shape.image.ext}"
with open(img_path, "wb") as f:
f.write(shape.image.blob)
images.append(img_path)
return images
except Exception as e:
print(f"Error extracting images from PPTX: {e}")
return []
# Convert Text to Embeddings
def get_text_embedding(text):
return text_model.encode(text).tolist()
# Extract Image Embeddings and Reduce to 384 Dimensions
def get_image_embedding(image_path):
try:
image = Image.open(image_path)
inputs = processor(images=image, return_tensors="pt")
with torch.no_grad():
image_embedding = model.get_image_features(**inputs).numpy().flatten()
# Ensure embedding is 384-dimensional
if len(image_embedding) != 384:
pca = PCA(n_components=384)
image_embedding = pca.fit_transform(image_embedding.reshape(1, -1)).flatten()
return image_embedding.tolist()
except Exception as e:
print(f"Error generating image embedding: {e}")
return None
# Store Data in ChromaDB
def store_data(texts, image_paths):
for i, text in enumerate(texts):
if text:
text_embedding = get_text_embedding(text)
if len(text_embedding) == 384:
collection.add(ids=[f"text_{i}"], embeddings=[text_embedding], documents=[text])
all_embeddings = [get_image_embedding(img_path) for img_path in image_paths if get_image_embedding(img_path) is not None]
if all_embeddings:
all_embeddings = np.array(all_embeddings)
# Apply PCA only if necessary
if all_embeddings.shape[1] != 384:
pca = PCA(n_components=384)
all_embeddings = pca.fit_transform(all_embeddings)
for j, img_path in enumerate(image_paths):
collection.add(ids=[f"image_{j}"], embeddings=[all_embeddings[j].tolist()], documents=[img_path])
print("Data stored successfully!")
# Process and Store from Files
def process_and_store(pdf_path=None, pptx_path=None):
texts, images = [], []
if pdf_path:
pdf_text = extract_text_from_pdf(pdf_path)
if pdf_text:
texts.append(pdf_text)
images.extend(extract_images_from_pdf(pdf_path))
if pptx_path:
pptx_text = extract_text_from_pptx(pptx_path)
if pptx_text:
texts.append(pptx_text)
images.extend(extract_images_from_pptx(pptx_path))
store_data(texts, images)
# FastAPI Endpoints
@app.get("/")
def greet_json():
# Run Data Processing
process_and_store(pdf_path=pdf_file, pptx_path=pptx_file)
return {"Document store": "created!"}
@app.get("/retrieval")
def retrieval(query: str):
try:
query_embedding = get_text_embedding(query)
results = collection.query(query_embeddings=[query_embedding], n_results=5)
return {"results": results.get("documents", [])}
except Exception as e:
return {"error": str(e)}
|