File size: 11,526 Bytes
99870b0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
764568f
ef44888
eeb6b15
f755e44
764568f
 
 
 
982ebc5
5052ec3
982ebc5
764568f
 
 
 
fe6b01e
5052ec3
ac029b5
d3581ea
99870b0
ac029b5
99870b0
04be667
99870b0
 
 
 
31e1abc
99870b0
 
31e1abc
99870b0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0d61df1
 
a2c2250
36150aa
99870b0
 
b9a9b75
71eef6d
4fc50df
 
99870b0
 
 
 
698106d
5850bee
a2c2250
2525b46
99870b0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ce350ed
 
 
 
99870b0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b497dbc
 
 
71eef6d
 
b497dbc
 
99870b0
 
7cbb602
 
 
53a3e69
7cbb602
 
 
 
 
 
05d64ab
 
7cbb602
 
05d64ab
 
7cbb602
99870b0
7cbb602
 
a7badb5
cfa2743
 
04356f9
cfa2743
36150aa
cfa2743
 
04356f9
cfa2743
b158209
 
 
 
 
c4695ef
 
b158209
 
 
 
 
 
 
 
ebdc07d
41463ae
 
 
 
 
 
f8beb3b
41463ae
52b0c2d
b158209
487c638
b158209
 
 
f1cd61f
f8beb3b
b158209
41463ae
52b0c2d
 
 
 
99870b0
 
d2c2e96
 
 
511b9fc
60ed144
92f652a
99870b0
60ed144
 
99870b0
60ed144
 
489e0e4
99870b0
 
 
 
ce350ed
 
 
 
99870b0
 
 
 
8ebb139
722a491
 
 
 
 
99870b0
 
 
722a491
 
 
 
 
 
 
 
 
 
 
 
99870b0
722a491
99870b0
722a491
99870b0
722a491
 
 
99870b0
f35a1a0
722a491
 
 
 
 
 
f35a1a0
722a491
e95f6ce
99870b0
7d788da
57c9642
247f0df
99870b0
247f0df
99870b0
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
import pandas as pd
from sklearn.model_selection import train_test_split
from transformers import AutoTokenizer, AutoModelForSequenceClassification, Trainer, TrainingArguments
import torch
from torch.utils.data import Dataset
from torch.utils.data import DataLoader
from transformers import RobertaTokenizer, RobertaForSequenceClassification
import pandas as pd

#from sklearn.linear_model import LogisticRegression
#from sklearn.metrics import accuracy_score, confusion_matrix
#import matplotlib.pyplot as plt
import seaborn as sns
#import numpy as np
import sys
import torch.nn.functional as F
#from torch.nn import CrossEntropyLoss
#from sklearn.decomposition import PCA
import matplotlib.pyplot as plt
import json
import gradio as gr
from huggingface_hub import HfApi, login, upload_folder, create_repo
import os

# Load configuration file 
with open('config.json', 'r') as config_file:
    config = json.load(config_file) 

num_args = len(config)

arg1 = config.get('arg1', 'default_value1') 
arg2 = config.get('arg2', 'default_value2') 

print(f"Argument 1: {arg1}") 
print(f"Argument 2: {arg2}")
print(f"Total argument size: {num_args}")

if num_args > 1:
    # sys.argv[0] is the script name, sys.argv[1] is the first argument, etc.
    runModel = arg1
    print(f"Passed value: {runModel}")
    print (arg2)  
else:
    print("No argument was passed.")

device = torch.device('cuda') if torch.cuda.is_available() else torch.device('cpu')
modelNameToUse = arg2

if (runModel=='1'):
    dataFileName = arg2 + '.csv'
    print (dataFileName)
    # Load the data from the CSV file
    df = pd.read_csv(dataFileName)
    # Access the text and labels
    texts = df['text'].tolist()
    labels = df['label'].tolist()

    print('Train Model')
     # Encode the labels
    sorted_labels = sorted(df['label'].unique())
    label_mapping = {label: i for i, label in enumerate(sorted_labels)}
    df['label'] = df['label'].map(label_mapping)
    print(df['label'])
    # Train/test split
    train_df, test_df = train_test_split(df, test_size=0.2, random_state=42)

    # Tokenization
    tokenizer = RobertaTokenizer.from_pretrained('roberta-base')

    # Model and training setup
    model = RobertaForSequenceClassification.from_pretrained('roberta-base', output_attentions=True, num_labels=len(label_mapping)).to('cpu')

    model.resize_token_embeddings(len(tokenizer))

    train_encodings = tokenizer(list(train_df['text']), truncation=True, padding=True, max_length=64)
    test_encodings = tokenizer(list(test_df['text']), truncation=True, padding=True, max_length=64)

    # Dataset class
    class IntentDataset(Dataset):
        def __init__(self, encodings, labels):
            
            self.encodings = encodings
            self.labels = labels

        def __getitem__(self, idx):
            item = {key: torch.tensor(val[idx]) for key, val in self.encodings.items()}
            label = self.labels[idx]
            item['labels'] = torch.tensor(self.labels[idx])
   

            return item

        def __len__(self):
            return len(self.labels)

    train_dataset = IntentDataset(train_encodings, list(train_df['label']))
    test_dataset = IntentDataset(test_encodings, list(test_df['label']))

 
    token = os.getenv("hf_token")
    login(token=token)
    
    
    # Create an instance of the custom loss function
    training_args = TrainingArguments(
        output_dir='./results_' + modelNameToUse,
        num_train_epochs=8,
        per_device_train_batch_size=2,
        per_device_eval_batch_size=2,
        warmup_steps=500,
        weight_decay=0.02,
        logging_dir='./logs_' + modelNameToUse,
        logging_steps=10,
        evaluation_strategy="epoch",  # Evaluation strategy is 'epoch'

    )
    
    trainer = Trainer(
        model=model,
        args=training_args,
        train_dataset=train_dataset,
        eval_dataset=test_dataset
    )

    # Train the model
    trainer.train()

    # Evaluate the model
    trainer.evaluate()

    label_mapping = {
        0: "lastmonth",
        1: "nextweek",
        2: "sevendays",
        3: "today",
        4: "tomorrow",
        5: "yesterday"
    }

    def evaluate_and_report_errors(model, dataloader, tokenizer):
        model.eval()
        incorrect_predictions = []
        with torch.no_grad():
            #print(dataloader)
            for batch in dataloader:
                input_ids = batch['input_ids'].to(device)
                attention_mask = batch['attention_mask'].to(device)
                labels = batch['labels'].to(device)
                outputs = model(input_ids=input_ids, attention_mask=attention_mask)
                logits = outputs.logits
                predictions = torch.argmax(logits, dim=1)

                for i, prediction in enumerate(predictions):
                    if prediction != labels[i]:
                        incorrect_predictions.append({
                            "prompt": tokenizer.decode(input_ids[i], skip_special_tokens=True),
                            "predicted": prediction.item(),
                            "actual": labels[i].item()
                        })

        # Print incorrect predictions
        if incorrect_predictions:
            print("\nIncorrect Predictions:")
            for error in incorrect_predictions:
                print(f"Sentence: {error['prompt']}")
                #print(f"Predicted Label: {GetCategoryFromCategoryLong(error['predicted'])} | Actual Label: {GetCategoryFromCategoryLong(error['actual'])}\n")
                print(f"Predicted Label: {label_mapping[error['predicted']]} | Actual Label: {label_mapping[error['actual']]}\n")
                #print(f"Predicted Label: {error['predicted']} | Actual Label: {label_mapping[error['actual']]}\n")
        else:
            print("\nNo incorrect predictions found.")

    train_dataloader = DataLoader(
        train_dataset, 
        batch_size=10, 
        shuffle=True
        #num_workers=4  # Increase workers for faster data loading
    )
    
    evaluate_and_report_errors(model,train_dataloader, tokenizer)

    model_path = './'  + modelNameToUse + '_model'
    tokenizer_path = './' + modelNameToUse + '_tokenizer'

    if os.path.isdir(model_path) and os.path.isdir(tokenizer_path):
        print(f"The directory of model {model_path} exists.")
        print("Directory contents:", os.listdir(model_path))

        print(f"The directory of tokenizer{tokenizer_path} exists.")
        print("Directory contents:", os.listdir(tokenizer_path))
    else:
        print(f"The directory {model_path} does not exist. Creating it now...")
        print(f"The directory {tokenizer_path} does not exist. Creating it now...")
        os.makedirs(model_path, exist_ok=True)  # Create the directory
        os.makedirs(tokenizer_path, exist_ok=True)  # Create the directory
        print(f"Directory {model_path} created successfully.")
        print(f"Directory {tokenizer_path} created successfully.")
        
    # Save the model and tokenizer
    model.save_pretrained(model_path)
    tokenizer.save_pretrained(tokenizer_path)

    # Check for specific files in the model directory
    model_files = os.listdir(model_path)
    model_files = [file for file in model_files]
    print("Specific files in model directory:", model_files)
    
    # Check for specific files in the tokenizer directory
    tokenizer_files = os.listdir(tokenizer_path)
    tokenizer_files = [file for file in tokenizer_files]
    print("Specific files in tokenizer directory:", tokenizer_files)

    #for push repository
    repo_name = "Reyad-Ahmmed/hf-data-timeframe" 

    # Your repository name 
    api_token = os.getenv("hf_token")  # Retrieve the API token from environment variable

    if not api_token:
        raise ValueError("API token not found. Please set the HF_API_TOKEN environment variable.")

    # Create repository (if not already created)
    api = HfApi()
    create_repo(repo_id=repo_name, token=api_token, exist_ok=True)

    # Upload the model and tokenizer to the Hugging Face repository
    
    upload_folder(
        folder_path=model_path,
        path_in_repo="data-timeframe_model",
        repo_id=repo_name,
        token=api_token,
        commit_message="Update fine-tuned model for test",
        #overwrite=True  # Force overwrite existing files
    )

    upload_folder(
        folder_path=tokenizer_path,
        path_in_repo="data-timeframe_tokenizer",
        repo_id=repo_name,
        token=api_token,
        commit_message="Update fine-tuned tokenizer",
        #overwrite=True  # Force overwrite existing files
    )
    
    tokenizer_files = os.listdir(tokenizer_path)
    tokenizer_files = [file for file in tokenizer_files]
    print("Specific files in tokenizer directory After Commit:", tokenizer_files)

else:
    print('Load Pre-trained')

    #model_save_path = "./" + modelNameToUse + "_model"
    #tokenizer_save_path = "./" + modelNameToUse + "_tokenizer"
    
    model_name = "Reyad-Ahmmed/hf-data-timeframe"

    # RobertaTokenizer.from_pretrained(model_save_path)
    model = AutoModelForSequenceClassification.from_pretrained(model_name, subfolder="data-timeframe_model").to('cpu')
    tokenizer = AutoTokenizer.from_pretrained(model_name, subfolder="data-timeframe_tokenizer")

    #model = AutoModelForSequenceClassification.from_pretrained(model_save_path).to('cpu')
    #tokenizer = AutoTokenizer.from_pretrained(tokenizer_save_path)

#Define the label mappings (this must match the mapping used during training)
label_mapping = {
    0: "lastmonth",
    1: "nextweek",
    2: "sevendays",
    3: "today",
    4: "tomorrow",
    5: "yesterday"
}


#Function to classify user input
def classifyTimeFrame(user_input):
    # Tokenize and predict
    input_encoding = tokenizer(user_input, padding=True, truncation=True, return_tensors="pt").to('cpu')
    
    with torch.no_grad():
        attention_mask = input_encoding['attention_mask'].clone()



        # Modify the attention mask to emphasize certain key tokens
        # for idx, token_id in enumerate(input_encoding['input_ids'][0]):
        #     word = tokenizer.decode([token_id])
        #     print(word)
        #     if word.strip() in ["now", "same", "continue", "again", "also"]:  # Target key tokens
        #         attention_mask[0, idx] = 3  # Increase attention weight for these words
        #     else:
        #         attention_mask[0, idx] = 0 
        # print (attention_mask)
        # input_encoding['attention_mask'] = attention_mask   
        # print (input_encoding)
        output = model(**input_encoding, output_hidden_states=True)

        probabilities = F.softmax(output.logits, dim=-1)

        prediction = torch.argmax(output.logits, dim=1).cpu().numpy()

        # Map prediction back to label
        print(prediction)
        predicted_label = label_mapping[prediction[0]]

        result = f"Predicted intent: {predicted_label}\n\n"
        print(f"Predicted intent: {predicted_label}\n")
        # Print the confidence for each label
        print("\nLabel Confidence Scores:")
        for i, label in label_mapping.items():
            confidence = probabilities[0][i].item()  # Get confidence score for each label
            print(f"{label}: {confidence:.4f}")
            result += f"{label}: {confidence:.4f}\n"
        print("\n")
        return result

iface = gr.Interface(fn=classifyTimeFrame, inputs="text", outputs="text") 
iface.launch(share=True)

#Run the function
#classifyTimeFrame()