Spaces:
Running
Running
File size: 18,104 Bytes
f965db0 003e48f f965db0 003e48f f965db0 003e48f e599283 9b22cca c921506 f965db0 d705d80 f965db0 d705d80 f965db0 84f01ec f965db0 3359d6e d705d80 9b22cca d705d80 3359d6e d705d80 f965db0 84f01ec 9b22cca 84f01ec f965db0 9b22cca 84f01ec 9b22cca f965db0 9b22cca f965db0 84f01ec f965db0 84f01ec f965db0 84f01ec 12aa779 84f01ec 9b22cca 84f01ec 9b22cca 3359d6e f965db0 9b22cca c921506 12aa779 9b22cca 12aa779 9b22cca 12aa779 9b22cca 12aa779 84f01ec 2931c23 12aa779 003e48f 9b22cca 003e48f 9b22cca 003e48f 9b22cca 003e48f 9b22cca 003e48f 9b22cca 003e48f 9b22cca 003e48f 9b22cca 003e48f 9b22cca 003e48f 9b22cca 003e48f 9b22cca c385f38 62716d8 c385f38 62716d8 c385f38 62716d8 6d13bb2 62716d8 6d13bb2 c385f38 6d13bb2 9b22cca |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 |
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""TODO: Add a description here."""
from typing import List, Literal, Tuple
import datasets
import evaluate
import numpy as np
from deprecated import deprecated
from seametrics.detection import PrecisionRecallF1Support
from seametrics.detection.utils import payload_to_det_metric
from seametrics.payload import Payload
_CITATION = """\
@InProceedings{coco:2020,
title = {Microsoft {COCO:} Common Objects in Context},
authors={Tsung{-}Yi Lin and
Michael Maire and
Serge J. Belongie and
James Hays and
Pietro Perona and
Deva Ramanan and
Piotr Dollar and
C. Lawrence Zitnick},
booktitle = {Computer Vision - {ECCV} 2014 - 13th European Conference, Zurich,
Switzerland, September 6-12, 2014, Proceedings, Part {V}},
series = {Lecture Notes in Computer Science},
volume = {8693},
pages = {740--755},
publisher = {Springer},
year={2014}
}
"""
_DESCRIPTION = """\
This evaluation metric is designed to give provide object detection metrics at
different object size levels. It is based on a modified version of the commonly used
COCO-evaluation metrics.
"""
_KWARGS_DESCRIPTION = """
Calculates object detection metrics given predicted and ground truth bounding boxes for
a single image.
Args:
predictions: list of predictions for each image. Each prediction should
be a dict containing the following
- 'boxes': list of bounding boxes, xywh in absolute pixel values
- 'labels': list of labels for each bounding box
- 'scores': list of scores for each bounding box
references: list of ground truth annotations for each image. Each reference should
be a dict containing the following
- 'boxes': list of bounding boxes, xywh in absolute pixel values
- 'labels': list of labels for each bounding box
- 'area': list of areas for each bounding box
Returns:
dict containing dicts for each specified area range with following items:
'range': specified area with [max_px_area, max_px_area]
'iouThr': min. IOU-threshold of a prediction with a ground truth box
to be considered a correct prediction
'maxDets': maximum number of detections
'tp': number of true positive (correct) predictions
'fp': number of false positive (incorrect) predictions
'fn': number of false negative (missed) predictions
'duplicates': number of duplicate predictions
'precision': best possible score = 1, worst possible score = 0
large if few false positive predictions
formula: tp/(fp+tp)
'recall' best possible score = 1, worst possible score = 0
large if few missed predictions
formula: tp/(tp+fn)
'f1': best possible score = 1, worst possible score = 0
trades off precision and recall
formula: 2*(precision*recall)/(precision+recall)
'support': number of ground truth bounding boxes considered in the evaluation,
'fpi': number of images with no ground truth but false positive predictions,
'nImgs': number of images considered in evaluation
Examples:
>>> import evaluate
>>> from seametrics.payload.processor import PayloadProcessor
>>> payload = PayloadProcessor(...).payload
>>> module = evaluate.load("SEA-AI/det-metrics", ...)
>>> module._add_payload(payload)
>>> result = module.compute()
>>> print(result)
{'all': {
'range': [0, 10000000000.0],
'iouThr': '0.00',
'maxDets': 100,
'tp': 1,
'fp': 3,
'fn': 1,
'duplicates': 0,
'precision': 0.25,
'recall': 0.5,
'f1': 0.3333333333333333,
'support': 2,
'fpi': 0,
'nImgs': 2
}
}
"""
@evaluate.utils.file_utils.add_start_docstrings(_DESCRIPTION, _KWARGS_DESCRIPTION)
class DetectionMetric(evaluate.Metric):
def __init__(
self,
area_ranges_tuples: List[Tuple[str, List[int]]] = [("all", [0, 1e5**2])],
iou_threshold: List[float] = [1e-10],
class_agnostic: bool = True,
bbox_format: str = "xywh",
iou_type: Literal["bbox", "segm"] = "bbox",
payload: Payload = None,
**kwargs,
):
super().__init__(**kwargs)
# save parameters for later
self.payload = payload
self.model_names = payload.models if payload else ["custom"]
self.iou_thresholds = (
iou_threshold if isinstance(iou_threshold, list) else [iou_threshold]
)
self.area_ranges = [v for _, v in area_ranges_tuples]
self.area_ranges_labels = [k for k, _ in area_ranges_tuples]
self.class_agnostic = class_agnostic
self.iou_type = iou_type
self.box_format = bbox_format
# initialize coco_metrics
self.coco_metric = PrecisionRecallF1Support(
iou_thresholds=self.iou_thresholds,
area_ranges=self.area_ranges,
area_ranges_labels=self.area_ranges_labels,
class_agnostic=self.class_agnostic,
iou_type=self.iou_type,
box_format=self.box_format,
)
# initialize evaluation metric
self._init_evaluation_metric()
def _info(self):
return evaluate.MetricInfo(
# This is the description that will appear on the modules page.
module_type="metric",
description=_DESCRIPTION,
citation=_CITATION,
inputs_description=_KWARGS_DESCRIPTION,
# This defines the format of each prediction and reference
features=datasets.Features(
{
"predictions": [
datasets.Features(
{
"boxes": datasets.Sequence(
datasets.Sequence(datasets.Value("float"))
),
"labels": datasets.Sequence(datasets.Value("int64")),
"scores": datasets.Sequence(datasets.Value("float")),
}
)
],
"references": [
datasets.Features(
{
"boxes": datasets.Sequence(
datasets.Sequence(datasets.Value("float"))
),
"labels": datasets.Sequence(datasets.Value("int64")),
"area": datasets.Sequence(datasets.Value("float")),
}
)
],
}
),
# Additional links to the codebase or references
codebase_urls=[
"https://github.com/SEA-AI/seametrics/tree/main",
"https://lightning.ai/docs/torchmetrics/stable/detection/mean_average_precision.html",
],
)
def add(self, *, prediction, reference, **kwargs):
"""Adds a batch of predictions and references to the metric"""
# in case the inputs are lists, convert them to numpy arrays
prediction = self._preprocess(prediction)
reference = self._preprocess(reference)
self.coco_metric.update(prediction, reference)
def _init_evaluation_metric(self, **kwargs):
"""
Initializes the evaluation metric by generating sample data, preprocessing predictions and references,
and then adding the processed data to the metric using the super class method with additional keyword arguments.
Parameters:
**kwargs: Additional keyword arguments for the super class method.
Returns:
None
"""
predictions, references = self._generate_sample_data()
predictions = self._preprocess(predictions)
references = self._preprocess(references)
# does not impact the metric, but is required for the interface x_x
super(evaluate.Metric, self).add(
prediction=self._postprocess(predictions),
references=self._postprocess(references),
**kwargs,
)
@deprecated(reason="Use `module._add_payload` instead")
def add_batch(self, payload: Payload, model_name: str = None):
"""Takes as input a payload and adds the batch to the metric"""
self._add_payload(payload, model_name)
def _compute(self, *, predictions, references, **kwargs):
"""Called within the evaluate.Metric.compute() method"""
results = {}
for model_name in self.model_names:
print(f"\n##### {model_name} #####")
# add payload if available (otherwise predictions and references must be added with add function)
if self.payload:
self._add_payload(self.payload, model_name)
results[model_name] = self.coco_metric.compute()
# reset coco_metrics for next model
self.coco_metric = PrecisionRecallF1Support(
iou_thresholds=self.iou_thresholds,
area_ranges=self.area_ranges,
area_ranges_labels=self.area_ranges_labels,
class_agnostic=self.class_agnostic,
iou_type=self.iou_type,
box_format=self.box_format,
)
return results
def _add_payload(self, payload: Payload, model_name: str = None):
"""Converts the payload to the format expected by the metric"""
# import only if needed since fiftyone is not a direct dependency
predictions, references = payload_to_det_metric(payload, model_name)
self.add(prediction=predictions, reference=references)
return self
def _preprocess(self, list_of_dicts):
"""Converts the lists to numpy arrays for type checking"""
return [self._lists_to_np(d) for d in list_of_dicts]
def _postprocess(self, list_of_dicts):
"""Converts the numpy arrays to lists for type checking"""
return [self._np_to_lists(d) for d in list_of_dicts]
def _np_to_lists(self, d):
"""datasets does not support numpy arrays for type checking"""
for k, v in d.items():
if isinstance(v, dict):
self._np_to_lists(v)
elif isinstance(v, np.ndarray):
d[k] = v.tolist()
return d
def _lists_to_np(self, d):
"""datasets does not support numpy arrays for type checking"""
for k, v in d.items():
if isinstance(v, dict):
self._lists_to_np(v)
elif isinstance(v, list):
d[k] = np.array(v)
return d
def generate_confidence_curves(
self, results, confidence_config={"T": 0, "R": 0, "K": 0, "A": 0, "M": 0}
):
"""
Generate confidence curves based on results and confidence configuration.
Parameters:
results (dict): Results of the evaluation for different models.
confidence_config (dict): Configuration for confidence values. Defaults to {"T": 0, "R": 0, "K": 0, "A": 0, "M": 0}.
T: [1e-10] iou threshold
R: recall threshold (not used)
K: class index (class-agnostic mAP, so only 0)
A: 0=all, 1=small, 2=medium, 3=large, ... (depending on area ranges)
M: [100] maxDets default in precision_recall_f1_support
Returns:
fig (plotly.graph_objects.Figure): The plotly figure showing the confidence curves.
"""
import plotly.graph_objects as go
from seametrics.detection.utils import get_confidence_metric_vals
# Create traces
fig = go.Figure()
metrics = ["precision", "recall", "f1"]
for model_name in self.model_names:
print(f"##### {model_name} #####")
plot_data = get_confidence_metric_vals(
cocoeval=results[model_name]["eval"],
T=confidence_config["T"],
R=confidence_config["R"],
K=confidence_config["K"],
A=confidence_config["A"],
M=confidence_config["M"],
)
for metric in metrics:
fig.add_trace(
go.Scatter(
x=plot_data["conf"],
y=plot_data[metric],
mode="lines",
name=f"{model_name} {metric}",
line=dict(dash=None if metric == "f1" else "dash"),
)
)
fig.update_layout(
title="Metric vs Confidence",
hovermode="x unified",
xaxis_title="Confidence",
yaxis_title="Metric value",
)
return fig
def wandb(self, results , wandb_runs: list = None, wandb_section: str = None, wandb_project='detection_metrics'):
"""
Logs metrics to Weights and Biases (wandb) for tracking and visualization.
This function logs the provided metrics to Weights and Biases (wandb), a platform for tracking machine learning experiments.
Each key in the `results` dictionary represents a separate run and the corresponding value contains the metrics for that run.
If a W&B run list is provided, the results of the runs will be added to the passed W&B runs. Otherwise new W&B runs will be created.
If a W&B section ist provided, the metrics will be logged in this section drop-down. Otherwise no extra W&B section is created
and the metrics are logged directly.
The function logs in to wandb using an API key obtained from the secret 'WANDB_API_KEY', initializes a run for
each key in `results` and logs the metrics.
Args:
results (dict): A dictionary where each key is a unique identifier for a run and each value is another dictionary
containing the metrics to log. Example:
{
"run1": {"metrics": {"accuracy": 0.9, "loss": 0.1}},
"run2": {"metrics": {"accuracy": 0.85, "loss": 0.15}}
}
wandb_runs (list, optional): A list containing W&B runs where the results should be added
(e.g. the first item in results will be added to the first run in wandb_runs, etc.)
wandb_section (str, optional): A string to specify the W&B
wandb_project (str, optional): The name of the wandb project to which the runs will be logged. Defaults to 'detection_metrics'.
Environment Variables:
WANDB_API_KEY: The API key for authenticating with wandb.
Imports:
os: To retrieve environment variables.
wandb: To interact with the Weights and Biases platform.
datetime: To generate a timestamp for run names.
"""
import os
import wandb
import datetime
current_datetime = datetime.datetime.now()
formatted_datetime = current_datetime.strftime("%Y-%m-%d_%H-%M-%S")
wandb.login(key=os.getenv('WANDB_API_KEY'))
if not wandb_runs is None:
assert len(wandb_runs) == len(results), "runs and results must have the same length"
for i, k in enumerate(results.keys()):
if wandb_runs is None:
run = wandb.init(project=wandb_project, name=f"{k}-{formatted_datetime}")
else:
run = wandb_runs[i]
run.log({f"{wandb_section}/{m}" : v for m, v in results[k]['metrics'].items()} if wandb_section is not None else results[k]['metrics'])
if wandb_runs is None:
run.finish()
def _generate_sample_data(self):
"""
Generates dummy sample data for predictions and references used for initialization.
Returns:
Tuple[List[Dict[str, List[Union[float, int]]]], List[Dict[str, List[Union[float, int]]]]]:
- predictions (List[Dict[str, List[Union[float, int]]]]): A list of dictionaries representing the predictions. Each dictionary contains the following keys:
- boxes (List[List[float]]): A list of bounding boxes in the format [x, y, w, h].
- labels (List[int]): A list of labels.
- scores (List[float]): A list of scores.
- references (List[Dict[str, List[Union[float, int]]]]): A list of dictionaries representing the references. Each dictionary contains the following keys:
- boxes (List[List[float]]): A list of bounding boxes in the format [x, y, w, h].
- labels (List[int]): A list of labels.
- area (List[float]): A list of areas.
"""
predictions = [
{"boxes": [[1.0, 2.0, 3.0, 4.0]], "labels": [0], "scores": [1.0]}
]
references = [{"boxes": [[1.0, 2.0, 3.0, 4.0]], "labels": [0], "area": [1.0]}]
return predictions, references
|