|
import gradio as gr |
|
from groq import Groq |
|
import os |
|
import threading |
|
|
|
|
|
client = Groq(api_key=os.environ["GROQ_API_KEY"]) |
|
|
|
|
|
model1 = gr.load("models/prithivMLmods/SD3.5-Turbo-Realism-2.0-LoRA") |
|
model2 = gr.load("models/Purz/face-projection") |
|
|
|
|
|
stop_event = threading.Event() |
|
|
|
|
|
def generate_tutor_output(subject, difficulty, student_input): |
|
prompt = f""" |
|
You are an expert tutor in {subject} at the {difficulty} level. |
|
The student has provided the following input: "{student_input}" |
|
|
|
Please generate: |
|
1. A brief, engaging lesson on the topic (2-3 paragraphs) |
|
2. A thought-provoking question to check understanding |
|
3. Constructive feedback on the student's input |
|
|
|
Format your response as a JSON object with keys: "lesson", "question", "feedback" |
|
""" |
|
|
|
completion = client.chat.completions.create( |
|
messages=[{ |
|
"role": "system", |
|
"content": f"You are the world's best AI tutor, renowned for your ability to explain complex concepts in an engaging, clear, and memorable way and giving math examples. Your expertise in {subject} is unparalleled, and you're adept at tailoring your teaching to {difficulty} level students." |
|
}, { |
|
"role": "user", |
|
"content": prompt, |
|
}], |
|
model="mixtral-8x7b-32768", |
|
max_tokens=1000, |
|
) |
|
|
|
return completion.choices[0].message.content |
|
|
|
|
|
def generate_images(text, selected_model): |
|
stop_event.clear() |
|
|
|
if selected_model == "Model 1 (Turbo Realism)": |
|
model = model1 |
|
elif selected_model == "Model 2 (Face Projection)": |
|
model = model2 |
|
else: |
|
return ["Invalid model selection."] * 3 |
|
|
|
results = [] |
|
for i in range(3): |
|
if stop_event.is_set(): |
|
return ["Image generation stopped by user."] * 3 |
|
|
|
modified_text = f"{text} variation {i+1}" |
|
result = model(modified_text) |
|
results.append(result) |
|
|
|
return results |
|
|
|
|
|
with gr.Blocks() as demo: |
|
gr.Markdown("# 🎓 Your AI Tutor with Visuals & Images") |
|
|
|
|
|
with gr.Row(): |
|
with gr.Column(scale=2): |
|
|
|
subject = gr.Dropdown( |
|
["Math", "Science", "History", "Literature", "Code", "AI"], |
|
label="Subject", |
|
info="Choose the subject of your lesson" |
|
) |
|
difficulty = gr.Radio( |
|
["Beginner", "Intermediate", "Advanced"], |
|
label="Difficulty Level", |
|
info="Select your proficiency level" |
|
) |
|
student_input = gr.Textbox( |
|
placeholder="Type your query here...", |
|
label="Your Input", |
|
info="Enter the topic you want to learn" |
|
) |
|
submit_button_text = gr.Button("Generate Lesson & Question", variant="primary") |
|
|
|
with gr.Column(scale=3): |
|
|
|
lesson_output = gr.Markdown(label="Lesson") |
|
question_output = gr.Markdown(label="Comprehension Question") |
|
feedback_output = gr.Markdown(label="Feedback") |
|
|
|
|
|
with gr.Row(): |
|
with gr.Column(scale=2): |
|
|
|
model_selector = gr.Radio( |
|
["Model 1 (Turbo Realism)", "Model 2 (Face Projection)"], |
|
label="Select Image Generation Model", |
|
value="Model 1 (Turbo Realism)" |
|
) |
|
submit_button_visual = gr.Button("Generate Visuals", variant="primary") |
|
|
|
with gr.Column(scale=3): |
|
|
|
output1 = gr.Image(label="Generated Image 1") |
|
output2 = gr.Image(label="Generated Image 2") |
|
output3 = gr.Image(label="Generated Image 3") |
|
|
|
gr.Markdown(""" |
|
### How to Use |
|
1. **Text Section**: Select a subject and difficulty, type your query, and click 'Generate Lesson & Question' to get your personalized lesson, comprehension question, and feedback. |
|
2. **Visual Section**: Select the model for image generation, then click 'Generate Visuals' to receive 3 variations of an image based on your topic. |
|
3. Review the AI-generated content to enhance your learning experience! |
|
""") |
|
|
|
def process_output_text(subject, difficulty, student_input): |
|
try: |
|
tutor_output = generate_tutor_output(subject, difficulty, student_input) |
|
parsed = eval(tutor_output) |
|
return parsed["lesson"], parsed["question"], parsed["feedback"] |
|
except: |
|
return "Error parsing output", "No question available", "No feedback available" |
|
|
|
def process_output_visual(text, selected_model): |
|
try: |
|
images = generate_images(text, selected_model) |
|
return images[0], images[1], images[2] |
|
except: |
|
return None, None, None |
|
|
|
|
|
submit_button_text.click( |
|
fn=process_output_text, |
|
inputs=[subject, difficulty, student_input], |
|
outputs=[lesson_output, question_output, feedback_output] |
|
) |
|
|
|
|
|
submit_button_visual.click( |
|
fn=process_output_visual, |
|
inputs=[student_input, model_selector], |
|
outputs=[output1, output2, output3] |
|
) |
|
|
|
if __name__ == "__main__": |
|
demo.launch(server_name="0.0.0.0", server_port=7860) |
|
|