File size: 8,395 Bytes
3991bdc e4f36a2 623c7aa 09e0d00 25f0308 09e0d00 623c7aa 09e0d00 623c7aa 09e0d00 5021bda 09e0d00 623c7aa 09e0d00 623c7aa 09e0d00 623c7aa 09e0d00 5021bda 09e0d00 c5b8c4a d7bc483 623c7aa d7bc483 623c7aa d7bc483 623c7aa 3991bdc 623c7aa d7bc483 623c7aa 09e0d00 623c7aa d7bc483 623c7aa 09e0d00 623c7aa 09e0d00 623c7aa 09e0d00 623c7aa 09e0d00 623c7aa 09e0d00 d7bc483 623c7aa 09e0d00 d7bc483 623c7aa d7bc483 623c7aa 09e0d00 d7bc483 623c7aa 09e0d00 623c7aa 09e0d00 623c7aa 09e0d00 623c7aa 09e0d00 3991bdc d7bc483 09e0d00 623c7aa e4f36a2 d7bc483 09e0d00 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 |
# app.py
import gradio as gr
from groq import Groq
import os
import json
# Initialize Groq client
try:
GROQ_API_KEY = os.environ["GROQ_API_KEY"]
print("API Key:", GROQ_API_KEY) # Debug print
client = Groq(api_key=GROQ_API_KEY)
except KeyError as e:
raise ValueError("GROQ_API_KEY not found in environment variables. Please set it in the Space settings under 'Variables'.")
# Define valid models (only the two specified models)
valid_models = [
"mistral-saba-24b",
"qwen-2.5-coder-32b"
]
# Function to generate tutor output (lesson, question, feedback)
def generate_tutor_output(subject, difficulty, student_input, model):
if not subject or not difficulty or not student_input:
return json.dumps({
"lesson": "Error: Please fill in all fields (subject, difficulty, and input).",
"question": "No question available",
"feedback": "No feedback available"
})
if model not in valid_models:
return json.dumps({
"lesson": f"Error: Invalid model selected: {model}. Please choose a valid model.",
"question": "No question available",
"feedback": "No feedback available"
})
prompt = f"""
You are an expert tutor in {subject} at the {difficulty} level.
The student has provided the following input: "{student_input}"
Please generate:
1. A brief, engaging lesson on the topic (2-3 paragraphs)
2. A thought-provoking question to check understanding
3. Constructive feedback on the student's input
Format your response as a JSON object with keys: "lesson", "question", "feedback"
"""
try:
print(f"Calling Groq API with model: {model}, subject: {subject}, difficulty: {difficulty}, input: {student_input}")
completion = client.chat.completions.create(
messages=[
{
"role": "system",
"content": f"You are the world's best AI tutor, renowned for your ability to explain complex concepts in an engaging, clear, and memorable way with examples suitable for {difficulty} level students. Your expertise in {subject} is unparalleled, and you're adept at tailoring your teaching to {difficulty} level students. Your goal is to not just impart knowledge, but to inspire a love for learning and critical thinking.",
},
{
"role": "user",
"content": prompt,
}
],
model=model,
max_tokens=1000,
)
response = completion.choices[0].message.content
print(f"Groq API Response: {response}") # Debug print
return response
except Exception as e:
print(f"Groq API Error: {str(e)}")
return json.dumps({
"lesson": f"Error: Could not generate lesson. API error: {str(e)}",
"question": "No question available",
"feedback": "No feedback available due to API error"
})
# Inline CSS to match the original styling
custom_css = """
body {
font-family: 'Poppins', sans-serif;
}
h1 {
font-size: 24px;
margin-bottom: 20px;
}
label {
font-weight: 600;
margin-bottom: 10px;
display: block;
}
select, input[type="text"], textarea {
width: 100%;
padding: 10px;
margin-bottom: 15px;
border: 1px solid #ddd;
border-radius: 5px;
font-size: 14px;
font-family: 'Poppins', sans-serif;
}
button {
background-color: #4CAF50;
color: white;
padding: 12px 20px;
border: none;
border-radius: 5px;
font-size: 14px;
font-weight: bold;
cursor: pointer;
transition: background-color 0.3s;
}
button:hover {
background-color: #45a049;
}
.markdown-output {
margin-top: 20px;
padding: 15px;
background-color: #f1f1f1;
border-radius: 5px;
min-height: 100px;
white-space: pre-wrap;
}
.floating-button {
position: fixed;
bottom: 30px;
left: 20px;
background-color: #dbdad7;
color: black;
padding: 15px 25px;
border: none;
border-radius: 10px;
font-size: 13px;
font-weight: bold;
cursor: pointer;
box-shadow: 0 4px 8px rgba(0, 0, 0, 0.2);
transition: background-color 0.3s, box-shadow 0.3s;
text-decoration: none;
font-family: 'Poppins', sans-serif;
display: flex;
align-items: center;
justify-content: center;
}
.floating-button:hover {
background-color: #dbdad7;
box-shadow: 0 6px 12px rgba(0, 0, 0, 0.3);
}
.floating-button i {
margin-right: 10px;
}
"""
# Gradio interface
with gr.Blocks(
title="AI Tutor with Text and Visuals",
css=custom_css
) as demo:
gr.Markdown("# 🎓 Learn & Explore")
# Section for generating Text-based output
with gr.Row():
with gr.Column(scale=2):
subject = gr.Dropdown(
["Math", "Science", "History", "Geography", "Economics"],
label="Subject",
info="Choose the subject of your lesson"
)
difficulty = gr.Dropdown(
["Beginner", "Intermediate", "Advanced"],
label="Difficulty Level",
info="Select your difficulty level"
)
model_select = gr.Dropdown(
valid_models,
label="AI Model",
value="qwen-2.5-32b",
info="Select the AI model to use"
)
student_input = gr.Textbox(
placeholder="Type your query here...",
label="Your Input",
info="Enter the topic you want to learn"
)
submit_button = gr.Button("Generate Lesson and Question", variant="primary")
with gr.Column(scale=3):
lesson_output = gr.Markdown(label="Lesson", elem_classes="markdown-output")
question_output = gr.Markdown(label="Comprehension Question", elem_classes="markdown-output")
feedback_output = gr.Markdown(label="Feedback", elem_classes="markdown-output")
# Section for Visual output using iframe (unchanged)
with gr.Row():
with gr.Column(scale=2):
gr.Markdown("## Image Generation")
gr.Markdown("Use the embedded tool below to generate images.")
submit_button_visual = gr.Button("Open Visual Tool", variant="primary")
with gr.Column(scale=3):
visual_output = gr.HTML(label="Image Generation Tool")
gr.HTML("""
<a href="https://discord.com/invite/EM4uHQrakm" class="floating-button" target="_blank">
<i class="fab fa-discord"></i> Join Discord
</a>
""")
gr.Markdown("""
### How to Use
1. **Text Section**: Select a subject, difficulty level, and model, type your query, and click 'Generate Lesson and Question' to get your personalized lesson, question, and feedback.
2. **Visual Section**: Click 'Open Visual Tool' to load the image generation tool, then use it to generate images.
3. Review the AI-generated content to enhance your learning experience!
*Example*: Try "Explain the water cycle" for a Beginner Science lesson, and use the image tool to generate "a photo of a rainforest ecosystem".
""")
def process_output(output):
print(f"Raw API Output: {output}") # Debug print
try:
parsed = json.loads(output)
return parsed["lesson"], parsed["question"], parsed["feedback"]
except Exception as e:
print(f"JSON Parsing Error: {str(e)}")
return "Error parsing output", "No question available", "No feedback available"
def load_visual_tool():
return """
<iframe style="width: 100%; height: 500px;" allowfullscreen="true" frameborder="0" src="https://artificialguybr-realvisxl-free-demo.hf.space"></iframe>
"""
# Generate Text-based Output
submit_button.click(
fn=lambda s, d, i, m: process_output(generate_tutor_output(s, d, i, m)),
inputs=[subject, difficulty, student_input, model_select],
outputs=[lesson_output, question_output, feedback_output]
)
# Load Visual Tool (iframe)
submit_button_visual.click(
fn=load_visual_tool,
inputs=[],
outputs=[visual_output]
)
if __name__ == "__main__":
demo.launch(server_name="0.0.0.0", server_port=7860) |