File size: 2,097 Bytes
42886cd
da9f292
5d670ae
da9f292
a29f826
da9f292
42886cd
 
da9f292
363a646
65ed4c1
a29f826
da9f292
42886cd
3ca006e
ddf8948
ee1d691
ddf8948
 
 
42886cd
ddf8948
 
 
 
61b752b
 
 
ddf8948
 
477d4fe
ddf8948
 
61b752b
ddf8948
 
 
 
acddb2f
103f82b
ddf8948
 
 
 
 
61b752b
ddf8948
 
 
 
 
 
 
103f82b
ddf8948
8fe1b94
65ed4c1
2132698
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
from mmocr.utils.ocr import MMOCR
import numpy as np
import cv2
import re
from PIL import Image

# Load MMOCR (det + recog)
ocr = MMOCR(det='DBPANet', recog='SAR', device='cpu')  # CPU mode for Hugging Face

def extract_weight_from_image(pil_img):
    try:
        img = np.array(pil_img.convert("RGB"))[:, :, ::-1]

        result = ocr.readtext(img, print_result=False, output=None)[0]['result']

        raw_texts = []
        weight_candidates = []
        fallback_weight = None
        fallback_conf = 0.0

        for text, conf in result:
            original = text
            cleaned = text.lower().strip()

            cleaned = cleaned.replace(",", ".")
            cleaned = cleaned.replace("o", "0").replace("O", "0")
            cleaned = cleaned.replace("s", "5").replace("S", "5")
            cleaned = cleaned.replace("g", "9").replace("G", "6")
            cleaned = cleaned.replace("kg", "").replace("kgs", "")
            cleaned = re.sub(r"[^0-9\.]", "", cleaned)

            raw_texts.append(f"{original}{cleaned} (conf: {round(conf, 2)})")

            if cleaned and cleaned.replace(".", "").isdigit() and not fallback_weight:
                fallback_weight = cleaned
                fallback_conf = conf

            if cleaned.count(".") <= 1 and re.fullmatch(r"\d{2,4}(\.\d{1,3})?", cleaned):
                weight_candidates.append((cleaned, conf))

        if weight_candidates:
            best_weight, best_conf = sorted(weight_candidates, key=lambda x: -x[1])[0]
        elif fallback_weight:
            best_weight, best_conf = fallback_weight, fallback_conf
        else:
            return "Not detected", 0.0, "\n".join(raw_texts)

        if "." in best_weight:
            int_part, dec_part = best_weight.split(".")
            int_part = int_part.lstrip("0") or "0"
            best_weight = f"{int_part}.{dec_part}"
        else:
            best_weight = best_weight.lstrip("0") or "0"

        return best_weight, round(best_conf * 100, 2), "\n".join(raw_texts)

    except Exception as e:
        return f"Error: {str(e)}", 0.0, "OCR failed"