Spaces:
Runtime error
Runtime error
File size: 2,301 Bytes
5d670ae da9f292 5d670ae da9f292 5d670ae da9f292 acddb2f 005d086 acddb2f 29533d7 acddb2f 3ca006e 29533d7 acddb2f 29533d7 acddb2f 363a646 65ed4c1 363a646 acddb2f da9f292 acddb2f 3ca006e acddb2f ee1d691 da9f292 5d670ae 29533d7 7a8e198 29533d7 005d086 acddb2f 477d4fe 7a8e198 acddb2f 103f82b ee1d691 acddb2f 103f82b 7a8e198 ee1d691 29533d7 7a8e198 29533d7 acddb2f 8fe1b94 65ed4c1 2132698 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 |
import easyocr
import numpy as np
import cv2
import re
reader = easyocr.Reader(['en'], gpu=False)
def enhance_image(img):
max_dim = 1000
height, width = img.shape[:2]
if max(height, width) > max_dim:
scale = max_dim / max(height, width)
img = cv2.resize(img, None, fx=scale, fy=scale, interpolation=cv2.INTER_AREA)
gray = cv2.cvtColor(img, cv2.COLOR_RGB2GRAY)
gray = cv2.fastNlMeansDenoising(gray, h=15)
kernel = np.array([[0, -1, 0], [-1, 5, -1], [0, -1, 0]])
sharp = cv2.filter2D(gray, -1, kernel)
clahe = cv2.createCLAHE(clipLimit=2.0, tileGridSize=(8, 8))
enhanced = clahe.apply(sharp)
return enhanced
def extract_weight_from_image(pil_img):
try:
img = np.array(pil_img)
enhanced = enhance_image(img)
results = reader.readtext(enhanced)
print("DEBUG OCR RESULTS:", results)
ocr_texts = [text for _, text, _ in results]
weight_candidates = []
for _, text, conf in results:
cleaned = text.lower().strip()
# Fix common OCR errors
cleaned = cleaned.replace(",", ".")
cleaned = cleaned.replace("o", "0").replace("O", "0")
cleaned = cleaned.replace("s", "5").replace("S", "5")
cleaned = cleaned.replace("g", "9").replace("G", "6")
cleaned = cleaned.replace("kg", "").replace("kgs", "")
cleaned = re.sub(r"[^\d\.]", "", cleaned)
# Match weights like: 58.8, 75.02, 97.2, 102.34, etc.
if re.fullmatch(r"\d{2,4}(\.\d{1,3})?", cleaned):
weight_candidates.append((cleaned, conf))
if not weight_candidates:
return "Not detected", 0.0, "\n".join(ocr_texts)
# Pick the highest confidence result
best_weight, best_conf = sorted(weight_candidates, key=lambda x: -x[1])[0]
# Remove unnecessary leading zeros
if "." in best_weight:
parts = best_weight.split(".")
parts[0] = parts[0].lstrip("0") or "0"
best_weight = ".".join(parts)
else:
best_weight = best_weight.lstrip("0") or "0"
return best_weight, round(best_conf * 100, 2), "\n".join(ocr_texts)
except Exception as e:
return f"Error: {str(e)}", 0.0, "OCR failed"
|