File size: 7,802 Bytes
975f9c6
 
 
 
5234a64
 
 
 
 
0bb13f0
5234a64
 
0f29b7c
 
 
 
975f9c6
2b694be
 
5234a64
 
0f29b7c
 
 
 
 
 
 
2b694be
 
 
 
0f29b7c
2b694be
 
 
0f29b7c
 
 
 
2b694be
0f29b7c
2b694be
 
 
fcdea18
2b694be
 
 
 
 
0f29b7c
 
 
 
 
2b694be
 
0f29b7c
2b694be
 
 
0f29b7c
2b694be
 
 
0f29b7c
fcdea18
0f29b7c
 
 
fcdea18
2b694be
5234a64
 
 
0f29b7c
 
 
2b694be
5234a64
 
 
 
2b694be
5234a64
 
 
 
 
 
 
2b694be
 
fcdea18
975f9c6
 
 
5234a64
 
0f29b7c
 
 
975f9c6
2b694be
 
 
 
 
0f29b7c
 
 
 
 
2b694be
975f9c6
8ccdb60
 
2b694be
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0f29b7c
2b694be
 
 
 
 
 
 
 
 
0f29b7c
 
 
2b694be
 
 
 
 
 
975f9c6
8ccdb60
5234a64
385a153
975f9c6
2154cf1
975f9c6
 
 
5234a64
975f9c6
2b694be
975f9c6
385a153
975f9c6
 
5234a64
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
import easyocr
import numpy as np
import cv2
import re
import logging

# Set up logging for debugging
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s')

# Initialize EasyOCR
easyocr_reader = easyocr.Reader(['en'], gpu=False)

def estimate_brightness(img):
    """Estimate image brightness to detect illuminated displays"""
    gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
    return np.mean(gray)

def detect_roi(img):
    """Detect and crop the region of interest (likely the digital display)"""
    try:
        gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
        # Threshold to isolate bright areas (like illuminated displays)
        brightness = estimate_brightness(img)
        thresh_value = 200 if brightness > 100 else 150  # Adjust based on brightness
        _, thresh = cv2.threshold(gray, thresh_value, 255, cv2.THRESH_BINARY)
        # Dilate to connect digits
        kernel = np.ones((7, 7), np.uint8)
        dilated = cv2.dilate(thresh, kernel, iterations=2)
        # Find contours
        contours, _ = cv2.findContours(dilated, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
        if contours:
            # Get the largest contour with reasonable size
            valid_contours = [c for c in contours if cv2.contourArea(c) > 500]
            if valid_contours:
                largest_contour = max(valid_contours, key=cv2.contourArea)
                x, y, w, h = cv2.boundingRect(largest_contour)
                # Add more padding and ensure bounds
                x, y = max(0, x-30), max(0, y-30)
                w, h = min(w+60, img.shape[1]-x), min(h+60, img.shape[0]-y)
                if w > 50 and h > 30:
                    return img[y:y+h, x:x+w]
        return img
    except Exception as e:
        logging.error(f"ROI detection failed: {str(e)}")
        return img

def enhance_image(img, mode="standard"):
    """Enhance image with different modes for multi-scale processing"""
    try:
        gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)

        if mode == "seven_segment":
            # Gentle preprocessing for seven-segment displays
            denoised = cv2.GaussianBlur(gray, (5, 5), 0)
            _, thresh = cv2.threshold(denoised, 0, 255, cv2.THRESH_BINARY + cv2.THRESH_OTSU)
        elif mode == "high_contrast":
            denoised = cv2.bilateralFilter(gray, d=11, sigmaColor=100, sigmaSpace=100)
            clahe = cv2.createCLAHE(clipLimit=3.0, tileGridSize=(8, 8))
            thresh = clahe.apply(denoised)
        elif mode == "low_noise":
            denoised = cv2.bilateralFilter(gray, d=7, sigmaColor=50, sigmaSpace=50)
            clahe = cv2.createCLAHE(clipLimit=1.5, tileGridSize=(8, 8))
            thresh = clahe.apply(denoised)
        else:
            denoised = cv2.bilateralFilter(gray, d=9, sigmaColor=75, sigmaSpace=75)
            clahe = cv2.createCLAHE(clipLimit=2.0, tileGridSize=(8, 8))
            thresh = clahe.apply(denoised)

        if mode != "seven_segment":
            thresh = cv2.adaptiveThreshold(thresh, 255, cv2.ADAPTIVE_THRESH_GAUSSIAN_C, 
                                          cv2.THRESH_BINARY, 11, 2)

        # Morphological operations
        kernel = np.ones((3, 3), np.uint8)
        morphed = cv2.morphologyEx(thresh, cv2.MORPH_CLOSE, kernel, iterations=1)

        # Reduced sharpening for seven-segment displays
        brightness = estimate_brightness(img)
        sharpen_strength = 3 if mode == "seven_segment" or brightness > 100 else 5
        sharpen_kernel = np.array([[0, -1, 0], [-1, sharpen_strength, -1], [0, -1, 0]])
        sharpened = cv2.filter2D(morphed, -1, sharpen_kernel)

        # Dynamic resizing
        h, w = sharpened.shape
        target_size = 800
        scale_factor = min(target_size / max(h, w), 2.0) if max(h, w) < 300 else min(target_size / max(h, w), 1.0)
        if scale_factor != 1.0:
            sharpened = cv2.resize(sharpened, None, fx=scale_factor, fy=scale_factor, 
                                 interpolation=cv2.INTER_CUBIC if scale_factor > 1 else cv2.INTER_AREA)

        return sharpened
    except Exception as e:
        logging.error(f"Image enhancement failed (mode={mode}): {str(e)}")
        return img

def extract_weight_from_image(pil_img):
    try:
        img = np.array(pil_img)
        img = cv2.cvtColor(img, cv2.COLOR_RGB2BGR)

        # Estimate brightness for adaptive thresholding
        brightness = estimate_brightness(img)
        conf_threshold = 0.5 if brightness > 100 else 0.4  # Stricter for bright displays

        # Detect ROI
        roi_img = detect_roi(img)

        # Process multiple image versions
        images_to_process = [
            ("seven_segment", enhance_image(roi_img, mode="seven_segment"), {'contrast_ths': 0.3, 'allowlist': '0123456789.'}),
            ("standard", enhance_image(roi_img, mode="standard"), {'contrast_ths': 0.1}),
            ("high_contrast", enhance_image(roi_img, mode="high_contrast"), {'contrast_ths': 0.1}),
            ("low_noise", enhance_image(roi_img, mode="low_noise"), {'contrast_ths': 0.1}),
            ("original", roi_img, {'contrast_ths': 0.3, 'allowlist': '0123456789.'})
        ]

        best_weight = None
        best_conf = 0.0
        best_score = 0.0

        for mode, proc_img, ocr_params in images_to_process:
            # EasyOCR detection
            results = easyocr_reader.readtext(proc_img, detail=1, paragraph=False, **ocr_params)
            
            for (bbox, text, conf) in results:
                original_text = text
                text = text.lower().strip()

                # Fix common OCR errors
                text = text.replace(",", ".").replace(";", ".")
                text = text.replace("o", "0").replace("O", "0")
                text = text.replace("s", "5").replace("S", "5")
                text = text.replace("g", "9").replace("G", "6")
                text = text.replace("l", "1").replace("I", "1")
                text = text.replace("b", "8").replace("B", "8")
                text = text.replace("z", "2").replace("Z", "2")
                text = text.replace("q", "9").replace("Q", "9")
                text = text.replace("6", "2").replace("9", "2")  # Specific correction for seven-segment
                text = text.replace("kgs", "").replace("kg", "").replace("k", "")
                text = re.sub(r"[^\d\.]", "", text)

                # Regex for weight (0.0 to 9999.999)
                if re.fullmatch(r"\d{1,4}(\.\d{0,3})?", text):
                    try:
                        weight = float(text)
                        # Score based on realistic weight range (0.1–500 kg)
                        range_score = 1.0 if 0.1 <= weight <= 500 else 0.3
                        # Prefer two-digit weights for scales
                        digit_score = 1.1 if 10 <= weight < 100 else 1.0
                        score = conf * range_score * digit_score
                        if score > best_score and conf > conf_threshold:
                            best_weight = text
                            best_conf = conf
                            best_score = score
                    except ValueError:
                        continue

        if not best_weight:
            logging.info("No valid weight detected")
            return "Not detected", 0.0

        # Format output
        if "." in best_weight:
            int_part, dec_part = best_weight.split(".")
            int_part = int_part.lstrip("0") or "0"
            best_weight = f"{int_part}.{dec_part.rstrip('0')}"
        else:
            best_weight = best_weight.lstrip('0') or "0"

        return best_weight, round(best_conf * 100, 2)

    except Exception as e:
        logging.error(f"Weight extraction failed: {str(e)}")
        return "Not detected", 0.0