File size: 7,267 Bytes
975f9c6
 
 
 
5234a64
 
 
 
 
0bb13f0
5234a64
 
 
 
2b694be
 
 
 
 
 
975f9c6
2b694be
 
5234a64
 
2b694be
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fcdea18
2b694be
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fcdea18
5234a64
fcdea18
2b694be
5234a64
 
fcdea18
2b694be
5234a64
 
 
2b694be
 
 
 
5234a64
 
 
 
2b694be
5234a64
 
 
 
 
 
 
2b694be
 
fcdea18
975f9c6
 
 
5234a64
 
2b694be
5234a64
2b694be
975f9c6
2b694be
 
 
 
 
 
 
 
 
 
975f9c6
8ccdb60
 
2b694be
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
975f9c6
8ccdb60
5234a64
385a153
975f9c6
2154cf1
975f9c6
 
 
5234a64
975f9c6
2b694be
975f9c6
385a153
975f9c6
 
5234a64
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
import easyocr
import numpy as np
import cv2
import re
import logging

# Set up logging for debugging
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s')

# Initialize EasyOCR
easyocr_reader = easyocr.Reader(['en'], gpu=False)

def estimate_blur(img):
    """Estimate image blur using Laplacian variance"""
    try:
        gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
        return cv2.Laplacian(gray, cv2.CV_64F).var()
    except Exception as e:
        logging.error(f"Blur estimation failed: {str(e)}")
        return 100  # Default value for fallback

def detect_roi(img):
    """Detect and crop the region of interest (likely the digital display)"""
    try:
        gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
        # Adaptive thresholding to handle varying lighting
        thresh = cv2.adaptiveThreshold(gray, 255, cv2.ADAPTIVE_THRESH_GAUSSIAN_C, 
                                      cv2.THRESH_BINARY_INV, 11, 2)
        # Dilate to connect text regions
        kernel = np.ones((5, 5), np.uint8)
        dilated = cv2.dilate(thresh, kernel, iterations=1)
        # Find contours
        contours, _ = cv2.findContours(dilated, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
        if contours:
            # Get the largest contour with reasonable size
            valid_contours = [c for c in contours if cv2.contourArea(c) > 1000]
            if valid_contours:
                largest_contour = max(valid_contours, key=cv2.contourArea)
                x, y, w, h = cv2.boundingRect(largest_contour)
                # Add padding and ensure bounds
                x, y = max(0, x-20), max(0, y-20)
                w, h = min(w+40, img.shape[1]-x), min(h+40, img.shape[0]-y)
                if w > 50 and h > 30:  # Minimum size for valid ROI
                    return img[y:y+h, x:x+w]
        return img  # Fallback to original image
    except Exception as e:
        logging.error(f"ROI detection failed: {str(e)}")
        return img

def enhance_image(img, mode="standard"):
    """Enhance image with different modes for multi-scale processing"""
    try:
        gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)

        if mode == "high_contrast":
            # Stronger denoising and contrast for blurry images
            denoised = cv2.bilateralFilter(gray, d=11, sigmaColor=100, sigmaSpace=100)
            clahe = cv2.createCLAHE(clipLimit=3.0, tileGridSize=(8, 8))
        elif mode == "low_noise":
            # Gentle denoising for clear but noisy images
            denoised = cv2.bilateralFilter(gray, d=7, sigmaColor=50, sigmaSpace=50)
            clahe = cv2.createCLAHE(clipLimit=1.5, tileGridSize=(8, 8))
        else:
            # Standard preprocessing
            denoised = cv2.bilateralFilter(gray, d=9, sigmaColor=75, sigmaSpace=75)
            clahe = cv2.createCLAHE(clipLimit=2.0, tileGridSize=(8, 8))

        contrast = clahe.apply(denoised)

        # Adaptive thresholding
        thresh = cv2.adaptiveThreshold(contrast, 255, cv2.ADAPTIVE_THRESH_GAUSSIAN_C, 
                                      cv2.THRESH_BINARY, 11, 2)

        # Morphological operations
        kernel = np.ones((3, 3), np.uint8)
        morphed = cv2.morphologyEx(thresh, cv2.MORPH_CLOSE, kernel, iterations=1)

        # Adaptive sharpening
        blur_score = estimate_blur(img)
        sharpen_strength = 5 if blur_score < 100 else 3
        sharpen_kernel = np.array([[0, -1, 0], [-1, sharpen_strength, -1], [0, -1, 0]])
        sharpened = cv2.filter2D(morphed, -1, sharpen_kernel)

        # Dynamic resizing
        h, w = sharpened.shape
        target_size = 800
        scale_factor = min(target_size / max(h, w), 2.0) if max(h, w) < 300 else min(target_size / max(h, w), 1.0)
        if scale_factor != 1.0:
            sharpened = cv2.resize(sharpened, None, fx=scale_factor, fy=scale_factor, 
                                 interpolation=cv2.INTER_CUBIC if scale_factor > 1 else cv2.INTER_AREA)

        return sharpened
    except Exception as e:
        logging.error(f"Image enhancement failed (mode={mode}): {str(e)}")
        return img

def extract_weight_from_image(pil_img):
    try:
        img = np.array(pil_img)
        img = cv2.cvtColor(img, cv2.COLOR_RGB2BGR)

        # Estimate blur for adaptive thresholding
        blur_score = estimate_blur(img)
        conf_threshold = 0.35 if blur_score < 100 else 0.55  # Slightly stricter thresholds

        # Detect ROI
        roi_img = detect_roi(img)

        # Process multiple image versions
        images_to_process = [
            ("standard", enhance_image(roi_img, mode="standard"), {}),
            ("high_contrast", enhance_image(roi_img, mode="high_contrast"), {}),
            ("low_noise", enhance_image(roi_img, mode="low_noise"), {}),
            ("original", roi_img, {'allowlist': '0123456789.'})  # Restrict to digits and decimal
        ]

        best_weight = None
        best_conf = 0.0
        best_score = 0.0

        for mode, proc_img, ocr_params in images_to_process:
            # EasyOCR detection
            results = easyocr_reader.readtext(proc_img, detail=1, paragraph=False, **ocr_params)
            
            for (bbox, text, conf) in results:
                original_text = text
                text = text.lower().strip()

                # Fix common OCR errors
                text = text.replace(",", ".").replace(";", ".")
                text = text.replace("o", "0").replace("O", "0")
                text = text.replace("s", "5").replace("S", "5")
                text = text.replace("g", "9").replace("G", "6")
                text = text.replace("l", "1").replace("I", "1")
                text = text.replace("b", "8").replace("B", "8")
                text = text.replace("z", "2").replace("Z", "2")
                text = text.replace("q", "9").replace("Q", "9")
                text = text.replace("kgs", "").replace("kg", "").replace("k", "")
                text = re.sub(r"[^\d\.]", "", text)

                # Regex for weight (0.0 to 9999.999)
                if re.fullmatch(r"\d{1,4}(\.\d{0,3})?", text):
                    try:
                        weight = float(text)
                        # Score based on realistic weight range (0.1–500 kg)
                        range_score = 1.0 if 0.1 <= weight <= 500 else 0.3
                        score = conf * range_score
                        if score > best_score and conf > conf_threshold:
                            best_weight = text
                            best_conf = conf
                            best_score = score
                    except ValueError:
                        continue

        if not best_weight:
            logging.info("No valid weight detected")
            return "Not detected", 0.0

        # Format output
        if "." in best_weight:
            int_part, dec_part = best_weight.split(".")
            int_part = int_part.lstrip("0") or "0"
            best_weight = f"{int_part}.{dec_part.rstrip('0')}"
        else:
            best_weight = best_weight.lstrip('0') or "0"

        return best_weight, round(best_conf * 100, 2)

    except Exception as e:
        logging.error(f"Weight extraction failed: {str(e)}")
        return "Not detected", 0.0