File size: 9,238 Bytes
975f9c6
 
 
 
5234a64
 
 
 
 
0bb13f0
5234a64
 
0f29b7c
 
 
 
975f9c6
2b694be
 
5234a64
 
32de3b7
 
 
 
 
2b694be
 
32de3b7
2b694be
7c31f9a
 
32de3b7
 
 
 
 
4c95d04
2b694be
 
4c95d04
 
 
 
 
32de3b7
4c95d04
 
32de3b7
4c95d04
32de3b7
 
 
 
 
 
 
4c95d04
 
 
 
 
 
32de3b7
 
4c95d04
 
32de3b7
 
4c95d04
32de3b7
4c95d04
 
 
 
 
 
 
 
 
 
 
 
 
 
32de3b7
4c95d04
 
32de3b7
 
 
 
4c95d04
32de3b7
4c95d04
 
 
 
2b694be
 
32de3b7
c7e59f2
32de3b7
4c95d04
32de3b7
 
 
 
4c95d04
 
 
32de3b7
 
 
c7e59f2
32de3b7
 
 
 
 
4c95d04
32de3b7
4c95d04
32de3b7
 
 
4c95d04
 
32de3b7
 
 
 
 
 
 
 
 
4c95d04
 
5234a64
4c95d04
 
fcdea18
975f9c6
 
 
5234a64
 
0f29b7c
32de3b7
975f9c6
32de3b7
4c95d04
32de3b7
 
4c95d04
 
32de3b7
4c95d04
 
 
32de3b7
4c95d04
 
32de3b7
4c95d04
32de3b7
 
 
 
c7e59f2
8ccdb60
 
2b694be
32de3b7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
975f9c6
8ccdb60
32de3b7
385a153
975f9c6
 
 
6dfd01b
32de3b7
975f9c6
6dfd01b
975f9c6
385a153
975f9c6
 
32de3b7
4ec2c37
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
import easyocr
import numpy as np
import cv2
import re
import logging

# Set up logging for debugging
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s')

# Initialize EasyOCR
easyocr_reader = easyocr.Reader(['en'], gpu=False)

def estimate_brightness(img):
    """Estimate image brightness to detect illuminated displays"""
    gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
    return np.mean(gray)

def detect_roi(img):
    """Detect and crop the region of interest (likely the digital display)"""
    try:
        gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
        brightness = estimate_brightness(img)
        thresh_value = 230 if brightness > 100 else 190
        _, thresh = cv2.threshold(gray, thresh_value, 255, cv2.THRESH_BINARY)
        kernel = np.ones((9, 9), np.uint8)
        dilated = cv2.dilate(thresh, kernel, iterations=3)
        contours, _ = cv2.findContours(dilated, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
        if contours:
            valid_contours = [c for c in contours if cv2.contourArea(c) > 500]
            if valid_contours:
                for contour in sorted(valid_contours, key=cv2.contourArea, reverse=True):
                    x, y, w, h = cv2.boundingRect(contour)
                    aspect_ratio = w / h
                    if 1.5 <= aspect_ratio <= 4.0 and w > 50 and h > 30:
                        x, y = max(0, x-40), max(0, y-40)
                        w, h = min(w+80, img.shape[1]-x), min(h+80, img.shape[0]-y)
                        return img[y:y+h, x:x+w], (x, y, w, h)
        return img, None
    except Exception as e:
        logging.error(f"ROI detection failed: {str(e)}")
        return img, None

def detect_segments(digit_img):
    """Detect seven-segment patterns in a digit image"""
    h, w = digit_img.shape
    if h < 10 or w < 10:
        return None

    # Define segment regions (top, middle, bottom, left-top, left-bottom, right-top, right-bottom)
    segments = {
        'top': (0, w, 0, h//5),
        'middle': (0, w, 2*h//5, 3*h//5),
        'bottom': (0, w, 4*h//5, h),
        'left_top': (0, w//5, 0, h//2),
        'left_bottom': (0, w//5, h//2, h),
        'right_top': (4*w//5, w, 0, h//2),
        'right_bottom': (4*w//5, w, h//2, h)
    }

    segment_presence = {}
    for name, (x1, x2, y1, y2) in segments.items():
        region = digit_img[y1:y2, x1:x2]
        if region.size == 0:
            return None
        # Count white pixels in the region
        pixel_count = np.sum(region == 255)
        total_pixels = region.size
        # Segment is present if more than 50% of the region is white
        segment_presence[name] = pixel_count > total_pixels * 0.5

    # Seven-segment digit patterns
    digit_patterns = {
        '0': ('top', 'bottom', 'left_top', 'left_bottom', 'right_top', 'right_bottom'),
        '1': ('right_top', 'right_bottom'),
        '2': ('top', 'middle', 'bottom', 'left_bottom', 'right_top'),
        '3': ('top', 'middle', 'bottom', 'right_top', 'right_bottom'),
        '4': ('middle', 'left_top', 'right_top', 'right_bottom'),
        '5': ('top', 'middle', 'bottom', 'left_top', 'right_bottom'),
        '6': ('top', 'middle', 'bottom', 'left_top', 'left_bottom', 'right_bottom'),
        '7': ('top', 'right_top', 'right_bottom'),
        '8': ('top', 'middle', 'bottom', 'left_top', 'left_bottom', 'right_top', 'right_bottom'),
        '9': ('top', 'middle', 'bottom', 'left_top', 'right_top', 'right_bottom')
    }

    best_match = None
    max_matches = 0
    for digit, pattern in digit_patterns.items():
        matches = sum(1 for segment in pattern if segment_presence.get(segment, False))
        non_matches = sum(1 for segment in segment_presence if segment not in pattern and segment_presence[segment])
        score = matches - non_matches
        if score > max_matches:
            max_matches = score
            best_match = digit

    return best_match

def custom_seven_segment_ocr(img, roi_bbox):
    """Perform custom OCR for seven-segment displays"""
    try:
        gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
        _, thresh = cv2.threshold(gray, 0, 255, cv2.THRESH_BINARY + cv2.THRESH_OTSU)

        # Use EasyOCR to get bounding boxes for digits
        results = easyocr_reader.readtext(thresh, detail=1, paragraph=False, 
                                        contrast_ths=0.1, adjust_contrast=0.7, 
                                        text_threshold=0.9, mag_ratio=1.5, 
                                        allowlist='0123456789.')

        if not results:
            return None

        # Sort bounding boxes left to right
        digits = []
        for (bbox, _, _) in results:
            (x1, y1), (x2, y2), (x3, y3), (x4, y4) = bbox
            x_min, x_max = min(x1, x4), max(x2, x3)
            y_min, y_max = min(y1, y2), max(y3, y4)
            digits.append((x_min, x_max, y_min, y_max))

        digits.sort(key=lambda x: x[0])  # Sort by x_min (left to right)

        # Extract and recognize each digit
        recognized_text = ""
        for x_min, x_max, y_min, y_max in digits:
            x_min, y_min = max(0, int(x_min)), max(0, int(y_min))
            x_max, y_max = min(thresh.shape[1], int(x_max)), min(thresh.shape[0], int(y_max))
            if x_max <= x_min or y_max <= y_min:
                continue
            digit_img = thresh[y_min:y_max, x_min:x_max]
            digit = detect_segments(digit_img)
            if digit:
                recognized_text += digit

        # Validate the recognized text
        text = recognized_text
        text = re.sub(r"[^\d\.]", "", text)
        if re.fullmatch(r"\d{1,4}(\.\d{0,3})?", text):
            return text
        return None
    except Exception as e:
        logging.error(f"Custom seven-segment OCR failed: {str(e)}")
        return None

def extract_weight_from_image(pil_img):
    try:
        img = np.array(pil_img)
        img = cv2.cvtColor(img, cv2.COLOR_RGB2BGR)

        brightness = estimate_brightness(img)
        conf_threshold = 0.9 if brightness > 100 else 0.7

        # Detect ROI
        roi_img, roi_bbox = detect_roi(img)

        # Try custom seven-segment OCR first
        custom_result = custom_seven_segment_ocr(roi_img, roi_bbox)
        if custom_result:
            # Format the custom result
            if "." in custom_result:
                int_part, dec_part = custom_result.split(".")
                int_part = int_part.lstrip("0") or "0"
                custom_result = f"{int_part}.{dec_part.rstrip('0')}"
            else:
                custom_result = custom_result.lstrip('0') or "0"
            return custom_result, 100.0  # High confidence for custom OCR

        # Fallback to EasyOCR if custom OCR fails
        images_to_process = [
            ("raw", roi_img, {'contrast_ths': 0.1, 'adjust_contrast': 0.7, 'text_threshold': 0.9, 'mag_ratio': 1.5, 'allowlist': '0123456789.'}),
        ]

        best_weight = None
        best_conf = 0.0
        best_score = 0.0

        for mode, proc_img, ocr_params in images_to_process:
            if mode == "raw":
                proc_img = cv2.cvtColor(proc_img, cv2.COLOR_BGR2GRAY)
            results = easyocr_reader.readtext(proc_img, detail=1, paragraph=False, **ocr_params)
            
            for (bbox, text, conf) in results:
                text = text.lower().strip()
                text = text.replace(",", ".").replace(";", ".")
                text = text.replace("o", "0").replace("O", "0")
                text = text.replace("s", "5").replace("S", "5")
                text = text.replace("g", "9").replace("G", "6")
                text = text.replace("l", "1").replace("I", "1")
                text = text.replace("b", "8").replace("B", "8")
                text = text.replace("z", "2").replace("Z", "2")
                text = text.replace("q", "9").replace("Q", "9")
                text = text.replace("kgs", "").replace("kg", "").replace("k", "")
                text = re.sub(r"[^\d\.]", "", text)

                if re.fullmatch(r"\d{1,4}(\.\d{0,3})?", text):
                    try:
                        weight = float(text)
                        range_score = 1.0 if 0.1 <= weight <= 500 else 0.3
                        digit_score = 1.5 if 10 <= weight < 100 else 1.0
                        score = conf * range_score * digit_score
                        if score > best_score and conf > conf_threshold:
                            best_weight = text
                            best_conf = conf
                            best_score = score
                    except ValueError:
                        continue

        if not best_weight:
            logging.info("No valid weight detected")
            return "Not detected", 0.0

        if "." in best_weight:
            int_part, dec_part = best_weight.split(".")
            int_part = int_part.lstrip("0") or "0"
            best_weight = f"{int_part}.{dec_part.rstrip('0')}"
        else:
            best_weight = best_weight.lstrip('0') or "0"

        return best_weight, round(best_conf * 100, 2)

    except Exception as e:
        logging.error(f"Weight extraction failed: {str(e)}")
        return "Not detected", 0.0