Spaces:
Running
Running
import pytesseract | |
import numpy as np | |
import cv2 | |
import re | |
import logging | |
from datetime import datetime | |
import os | |
from PIL import Image | |
# Set up logging | |
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s') | |
# Directory for debug images | |
DEBUG_DIR = "debug_images" | |
os.makedirs(DEBUG_DIR, exist_ok=True) | |
def save_debug_image(img, filename_suffix, prefix=""): | |
"""Save image to debug directory with timestamp.""" | |
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S_%f") | |
filename = os.path.join(DEBUG_DIR, f"{prefix}{timestamp}_{filename_suffix}.png") | |
if isinstance(img, Image.Image): | |
img.save(filename) | |
elif len(img.shape) == 3: | |
cv2.imwrite(filename, cv2.cvtColor(img, cv2.COLOR_BGR2RGB)) | |
else: | |
cv2.imwrite(filename, img) | |
logging.info(f"Saved debug image: {filename}") | |
def estimate_brightness(img): | |
"""Estimate image brightness.""" | |
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) | |
return np.mean(gray) | |
def preprocess_image(img): | |
"""Preprocess image for OCR with enhanced contrast and noise reduction.""" | |
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) | |
brightness = estimate_brightness(img) | |
# Dynamic CLAHE | |
clahe_clip = 5.0 if brightness < 80 else 3.0 | |
clahe = cv2.createCLAHE(clipLimit=clahe_clip, tileGridSize=(8, 8)) | |
enhanced = clahe.apply(gray) | |
save_debug_image(enhanced, "01_preprocess_clahe") | |
# Gaussian blur | |
blurred = cv2.GaussianBlur(enhanced, (3, 3), 0) | |
save_debug_image(blurred, "02_preprocess_blur") | |
# Dynamic thresholding | |
block_size = max(11, min(31, int(img.shape[0] / 15) * 2 + 1)) | |
thresh = cv2.adaptiveThreshold(blurred, 255, cv2.ADAPTIVE_THRESH_GAUSSIAN_C, | |
cv2.THRESH_BINARY_INV, block_size, 5) | |
# Morphological operations | |
kernel = cv2.getStructuringElement(cv2.MORPH_RECT, (3, 3)) | |
thresh = cv2.morphologyEx(thresh, cv2.MORPH_OPEN, kernel, iterations=1) | |
thresh = cv2.morphologyEx(thresh, cv2.MORPH_CLOSE, kernel, iterations=2) | |
save_debug_image(thresh, "03_preprocess_morph") | |
return thresh, enhanced | |
def correct_rotation(img): | |
"""Correct image rotation using edge detection.""" | |
try: | |
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) | |
edges = cv2.Canny(gray, 50, 150, apertureSize=3) | |
lines = cv2.HoughLinesP(edges, 1, np.pi / 180, threshold=50, minLineLength=30, maxLineGap=10) | |
if lines is not None: | |
angles = [np.arctan2(line[0][3] - line[0][1], line[0][2] - line[0][0]) * 180 / np.pi for line in lines] | |
angle = np.median(angles) | |
if abs(angle) > 1.0: | |
h, w = img.shape[:2] | |
center = (w // 2, h // 2) | |
M = cv2.getRotationMatrix2D(center, angle, 1.0) | |
img = cv2.warpAffine(img, M, (w, h)) | |
save_debug_image(img, "00_rotated_image") | |
logging.info(f"Applied rotation: {angle:.2f} degrees") | |
return img | |
except Exception as e: | |
logging.error(f"Rotation correction failed: {str(e)}") | |
return img | |
def detect_roi(img): | |
"""Detect region of interest (display) with multi-scale contour filtering.""" | |
try: | |
save_debug_image(img, "04_original") | |
thresh, enhanced = preprocess_image(img) | |
brightness_map = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) | |
block_sizes = [max(11, min(31, int(img.shape[0] / s) * 2 + 1)) for s in [12, 15, 18]] | |
valid_contours = [] | |
img_area = img.shape[0] * img.shape[1] | |
for block_size in block_sizes: | |
temp_thresh = cv2.adaptiveThreshold(enhanced, 255, cv2.ADAPTIVE_THRESH_GAUSSIAN_C, | |
cv2.THRESH_BINARY_INV, block_size, 5) | |
kernel = cv2.getStructuringElement(cv2.MORPH_RECT, (5, 5)) | |
temp_thresh = cv2.morphologyEx(temp_thresh, cv2.MORPH_CLOSE, kernel, iterations=2) | |
save_debug_image(temp_thresh, f"05_roi_threshold_block{block_size}") | |
contours, _ = cv2.findContours(temp_thresh, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE) | |
for c in contours: | |
area = cv2.contourArea(c) | |
x, y, w, h = cv2.boundingRect(c) | |
roi_brightness = np.mean(brightness_map[y:y+h, x:x+w]) | |
aspect_ratio = w / h | |
if (400 < area < (img_area * 0.6) and | |
0.5 <= aspect_ratio <= 8.0 and w > 70 and h > 30 and roi_brightness > 50): | |
valid_contours.append((c, area * roi_brightness)) | |
logging.debug(f"Contour (block {block_size}): Area={area}, Aspect={aspect_ratio:.2f}, Brightness={roi_brightness:.2f}") | |
if valid_contours: | |
contour, _ = max(valid_contours, key=lambda x: x[1]) | |
x, y, w, h = cv2.boundingRect(contour) | |
padding = max(20, min(60, int(min(w, h) * 0.4))) | |
x, y = max(0, x - padding), max(0, y - padding) | |
w, h = min(w + 2 * padding, img.shape[1] - x), min(h + 2 * padding, img.shape[0] - y) | |
roi_img = img[y:y+h, x:x+w] | |
save_debug_image(roi_img, "06_detected_roi") | |
logging.info(f"Detected ROI: ({x}, {y}, {w}, {h})") | |
return roi_img, (x, y, w, h) | |
logging.info("No ROI found, using full image.") | |
save_debug_image(img, "06_no_roi_fallback") | |
return img, None | |
except Exception as e: | |
logging.error(f"ROI detection failed: {str(e)}") | |
save_debug_image(img, "06_roi_error_fallback") | |
return img, None | |
def detect_segments(digit_img, brightness): | |
"""Detect seven-segment digits with adaptive thresholds.""" | |
try: | |
h, w = digit_img.shape | |
if h < 15 or w < 8: | |
logging.debug("Digit image too small for segment detection.") | |
return None | |
segment_threshold = 0.25 if brightness < 80 else 0.35 | |
segments = { | |
'top': (int(w*0.1), int(w*0.9), 0, int(h*0.25)), | |
'middle': (int(w*0.1), int(w*0.9), int(h*0.45), int(h*0.55)), | |
'bottom': (int(w*0.1), int(w*0.9), int(h*0.75), h), | |
'left_top': (0, int(w*0.3), int(h*0.1), int(h*0.5)), | |
'left_bottom': (0, int(w*0.3), int(h*0.5), int(h*0.9)), | |
'right_top': (int(w*0.7), w, int(h*0.1), int(h*0.5)), | |
'right_bottom': (int(w*0.7), w, int(h*0.5), int(h*0.9)) | |
} | |
segment_presence = {} | |
for name, (x1, x2, y1, y2) in segments.items(): | |
x1, y1 = max(0, x1), max(0, y1) | |
x2, y2 = min(w, x2), min(h, y2) | |
region = digit_img[y1:y2, x1:x2] | |
if region.size == 0: | |
segment_presence[name] = False | |
continue | |
pixel_count = np.sum(region == 255) | |
total_pixels = region.size | |
segment_presence[name] = pixel_count / total_pixels > segment_threshold | |
logging.debug(f"Segment {name}: {pixel_count}/{total_pixels} = {pixel_count/total_pixels:.2f}") | |
digit_patterns = { | |
'0': ('top', 'bottom', 'left_top', 'left_bottom', 'right_top', 'right_bottom'), | |
'1': ('right_top', 'right_bottom'), | |
'2': ('top', 'middle', 'bottom', 'left_bottom', 'right_top'), | |
'3': ('top', 'middle', 'bottom', 'right_top', 'right_bottom'), | |
'4': ('middle', 'left_top', 'right_top', 'right_bottom'), | |
'5': ('top', 'middle', 'bottom', 'left_top', 'right_bottom'), | |
'6': ('top', 'middle', 'bottom', 'left_top', 'left_bottom', 'right_bottom'), | |
'7': ('top', 'right_top', 'right_bottom'), | |
'8': ('top', 'middle', 'bottom', 'left_top', 'left_bottom', 'right_top', 'right_bottom'), | |
'9': ('top', 'middle', 'bottom', 'left_top', 'right_top', 'right_bottom') | |
} | |
best_match, best_score = None, -1 | |
for digit, pattern in digit_patterns.items(): | |
matches = sum(1 for segment in pattern if segment_presence.get(segment, False)) | |
non_matches = sum(1 for segment in segment_presence if segment not in pattern and segment_presence[segment]) | |
score = matches - 0.15 * non_matches | |
if matches >= len(pattern) * 0.65: | |
score += 1.2 | |
if score > best_score: | |
best_score = score | |
best_match = digit | |
logging.debug(f"Segment detection: {segment_presence}, Digit: {best_match}, Score: {best_score:.2f}") | |
return best_match | |
except Exception as e: | |
logging.error(f"Segment detection failed: {str(e)}") | |
return None | |
def perform_ocr(img, roi_bbox): | |
"""Perform OCR with Tesseract and seven-segment fallback.""" | |
try: | |
thresh, enhanced = preprocess_image(img) | |
brightness = estimate_brightness(img) | |
pil_img = Image.fromarray(enhanced) | |
save_debug_image(pil_img, "07_ocr_input") | |
# Tesseract OCR with numeric config | |
custom_config = r'--oem 3 --psm 7 -c tessedit_char_whitelist=0123456789.' | |
text = pytesseract.image_to_string(pil_img, config=custom_config) | |
logging.info(f"Tesseract raw output: {text}") | |
# Clean and validate text | |
text = re.sub(r"[^\d\.]", "", text) | |
if text.count('.') > 1: | |
text = text.replace('.', '', text.count('.') - 1) | |
text = text.strip('.') | |
if text and re.fullmatch(r"^\d*\.?\d*$", text): | |
text = text.lstrip('0') or '0' | |
confidence = 95.0 if len(text.replace('.', '')) >= 2 else 90.0 | |
logging.info(f"Validated Tesseract text: {text}, Confidence: {confidence:.2f}%") | |
return text, confidence | |
# Fallback to seven-segment detection | |
logging.info("Tesseract failed, using seven-segment detection.") | |
contours, _ = cv2.findContours(thresh, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE) | |
digits_info = [] | |
for c in contours: | |
x, y, w, h = cv2.boundingRect(c) | |
if w > 10 and h > 15 and 0.2 <= w/h <= 1.5: | |
digits_info.append((x, x+w, y, y+h)) | |
if digits_info: | |
digits_info.sort(key=lambda x: x[0]) | |
recognized_text = "" | |
for idx, (x_min, x_max, y_min, y_max) in enumerate(digits_info): | |
x_min, y_min = max(0, x_min), max(0, y_min) | |
x_max, y_max = min(thresh.shape[1], x_max), min(thresh.shape[0], y_max) | |
if x_max <= x_min or y_max <= y_min: | |
continue | |
digit_crop = thresh[y_min:y_max, x_min:x_max] | |
save_debug_image(digit_crop, f"08_digit_crop_{idx}") | |
segment_digit = detect_segments(digit_crop, brightness) | |
if segment_digit: | |
recognized_text += segment_digit | |
elif idx < len(digits_info) - 1 and (digits_info[idx+1][0] - x_max) < 10: | |
recognized_text += '.' # Assume decimal point for close digits | |
text = re.sub(r"[^\d\.]", "", recognized_text) | |
if text.count('.') > 1: | |
text = text.replace('.', '', text.count('.') - 1) | |
text = text.strip('.') | |
if text and re.fullmatch(r"^\d*\.?\d*$", text): | |
text = text.lstrip('0') or '0' | |
confidence = 90.0 | |
logging.info(f"Validated segment text: {text}, Confidence: {confidence:.2f}%") | |
return text, confidence | |
logging.info("No valid digits detected.") | |
return None, 0.0 | |
except Exception as e: | |
logging.error(f"OCR failed: {str(e)}") | |
return None, 0.0 | |
def extract_weight_from_image(pil_img): | |
"""Extract weight from a digital scale image.""" | |
try: | |
img = np.array(pil_img) | |
img = cv2.cvtColor(img, cv2.COLOR_RGB2BGR) | |
save_debug_image(img, "00_input_image") | |
img = correct_rotation(img) | |
brightness = estimate_brightness(img) | |
conf_threshold = 0.8 if brightness > 100 else 0.6 | |
roi_img, roi_bbox = detect_roi(img) | |
if roi_bbox: | |
conf_threshold *= 1.1 if (roi_bbox[2] * roi_bbox[3]) > (img.shape[0] * img.shape[1] * 0.3) else 1.0 | |
result, confidence = perform_ocr(roi_img, roi_bbox) | |
if result and confidence >= conf_threshold * 100: | |
try: | |
weight = float(result) | |
if 0.01 <= weight <= 1000: | |
logging.info(f"Detected weight: {result} kg, Confidence: {confidence:.2f}%") | |
return result, confidence | |
logging.warning(f"Weight {result} out of range.") | |
except ValueError: | |
logging.warning(f"Invalid weight format: {result}") | |
logging.info("Primary OCR failed, using full image fallback.") | |
result, confidence = perform_ocr(img, None) | |
if result and confidence >= conf_threshold * 0.9 * 100: | |
try: | |
weight = float(result) | |
if 0.01 <= weight <= 1000: | |
logging.info(f"Full image weight: {result} kg, Confidence: {confidence:.2f}%") | |
return result, confidence | |
logging.warning(f"Full image weight {result} out of range.") | |
except ValueError: | |
logging.warning(f"Invalid full image weight format: {result}") | |
logging.info("No valid weight detected.") | |
return "Not detected", 0.0 | |
except Exception as e: | |
logging.error(f"Weight extraction failed: {str(e)}") | |
return "Not detected", 0.0 |