Spaces:
Running
Running
File size: 13,557 Bytes
e58b1c2 975f9c6 5234a64 d373620 e58b1c2 5234a64 8254c9e 9ac49a2 5234a64 d373620 8254c9e d373620 e58b1c2 6ae35d6 8254c9e d373620 9ac49a2 d373620 0f29b7c 8254c9e 0f29b7c 9ac49a2 d373620 8254c9e 6ae35d6 c320b80 9f46cc7 e58b1c2 9f46cc7 e58b1c2 9f46cc7 e58b1c2 ded0d50 9f46cc7 ded0d50 e58b1c2 6ae35d6 9f46cc7 ded0d50 9f46cc7 3137c41 6ae35d6 3137c41 6ae35d6 ded0d50 8254c9e 3137c41 a6294cd 9f46cc7 8254c9e 3137c41 8254c9e 3137c41 c320b80 9ac49a2 ded0d50 5234a64 6ae35d6 9f46cc7 8254c9e e58b1c2 ded0d50 373b0d2 ded0d50 8254c9e e58b1c2 6ae35d6 ded0d50 e58b1c2 ded0d50 8254c9e ded0d50 9ac49a2 5234a64 9ac49a2 ded0d50 9ac49a2 ded0d50 e58b1c2 ded0d50 e58b1c2 ded0d50 e58b1c2 ded0d50 e58b1c2 9ac49a2 ded0d50 e58b1c2 ded0d50 e58b1c2 ded0d50 e58b1c2 ded0d50 e58b1c2 ded0d50 e58b1c2 ded0d50 e58b1c2 ded0d50 6ae35d6 9ac49a2 6ae35d6 975f9c6 9ac49a2 8254c9e 9ac49a2 c320b80 3137c41 9ac49a2 e58b1c2 3137c41 b613b80 e790db4 9ac49a2 ded0d50 6ae35d6 9ac49a2 6ae35d6 ded0d50 6ae35d6 9ac49a2 6ae35d6 9ac49a2 6ae35d6 ded0d50 9f46cc7 6ae35d6 e790db4 6ae35d6 b613b80 6ae35d6 b613b80 8254c9e b613b80 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 |
import pytesseract
import numpy as np
import cv2
import re
import logging
from datetime import datetime
import os
from PIL import Image
# Set up logging
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s')
# Directory for debug images
DEBUG_DIR = "debug_images"
os.makedirs(DEBUG_DIR, exist_ok=True)
def save_debug_image(img, filename_suffix, prefix=""):
"""Save image to debug directory with timestamp."""
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S_%f")
filename = os.path.join(DEBUG_DIR, f"{prefix}{timestamp}_{filename_suffix}.png")
if isinstance(img, Image.Image):
img.save(filename)
elif len(img.shape) == 3:
cv2.imwrite(filename, cv2.cvtColor(img, cv2.COLOR_BGR2RGB))
else:
cv2.imwrite(filename, img)
logging.info(f"Saved debug image: {filename}")
def estimate_brightness(img):
"""Estimate image brightness."""
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
return np.mean(gray)
def preprocess_image(img):
"""Preprocess image for OCR with enhanced contrast and noise reduction."""
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
brightness = estimate_brightness(img)
# Dynamic CLAHE
clahe_clip = 5.0 if brightness < 80 else 3.0
clahe = cv2.createCLAHE(clipLimit=clahe_clip, tileGridSize=(8, 8))
enhanced = clahe.apply(gray)
save_debug_image(enhanced, "01_preprocess_clahe")
# Gaussian blur
blurred = cv2.GaussianBlur(enhanced, (3, 3), 0)
save_debug_image(blurred, "02_preprocess_blur")
# Dynamic thresholding
block_size = max(11, min(31, int(img.shape[0] / 15) * 2 + 1))
thresh = cv2.adaptiveThreshold(blurred, 255, cv2.ADAPTIVE_THRESH_GAUSSIAN_C,
cv2.THRESH_BINARY_INV, block_size, 5)
# Morphological operations
kernel = cv2.getStructuringElement(cv2.MORPH_RECT, (3, 3))
thresh = cv2.morphologyEx(thresh, cv2.MORPH_OPEN, kernel, iterations=1)
thresh = cv2.morphologyEx(thresh, cv2.MORPH_CLOSE, kernel, iterations=2)
save_debug_image(thresh, "03_preprocess_morph")
return thresh, enhanced
def correct_rotation(img):
"""Correct image rotation using edge detection."""
try:
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
edges = cv2.Canny(gray, 50, 150, apertureSize=3)
lines = cv2.HoughLinesP(edges, 1, np.pi / 180, threshold=50, minLineLength=30, maxLineGap=10)
if lines is not None:
angles = [np.arctan2(line[0][3] - line[0][1], line[0][2] - line[0][0]) * 180 / np.pi for line in lines]
angle = np.median(angles)
if abs(angle) > 1.0:
h, w = img.shape[:2]
center = (w // 2, h // 2)
M = cv2.getRotationMatrix2D(center, angle, 1.0)
img = cv2.warpAffine(img, M, (w, h))
save_debug_image(img, "00_rotated_image")
logging.info(f"Applied rotation: {angle:.2f} degrees")
return img
except Exception as e:
logging.error(f"Rotation correction failed: {str(e)}")
return img
def detect_roi(img):
"""Detect region of interest (display) with multi-scale contour filtering."""
try:
save_debug_image(img, "04_original")
thresh, enhanced = preprocess_image(img)
brightness_map = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
block_sizes = [max(11, min(31, int(img.shape[0] / s) * 2 + 1)) for s in [12, 15, 18]]
valid_contours = []
img_area = img.shape[0] * img.shape[1]
for block_size in block_sizes:
temp_thresh = cv2.adaptiveThreshold(enhanced, 255, cv2.ADAPTIVE_THRESH_GAUSSIAN_C,
cv2.THRESH_BINARY_INV, block_size, 5)
kernel = cv2.getStructuringElement(cv2.MORPH_RECT, (5, 5))
temp_thresh = cv2.morphologyEx(temp_thresh, cv2.MORPH_CLOSE, kernel, iterations=2)
save_debug_image(temp_thresh, f"05_roi_threshold_block{block_size}")
contours, _ = cv2.findContours(temp_thresh, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
for c in contours:
area = cv2.contourArea(c)
x, y, w, h = cv2.boundingRect(c)
roi_brightness = np.mean(brightness_map[y:y+h, x:x+w])
aspect_ratio = w / h
if (400 < area < (img_area * 0.6) and
0.5 <= aspect_ratio <= 8.0 and w > 70 and h > 30 and roi_brightness > 50):
valid_contours.append((c, area * roi_brightness))
logging.debug(f"Contour (block {block_size}): Area={area}, Aspect={aspect_ratio:.2f}, Brightness={roi_brightness:.2f}")
if valid_contours:
contour, _ = max(valid_contours, key=lambda x: x[1])
x, y, w, h = cv2.boundingRect(contour)
padding = max(20, min(60, int(min(w, h) * 0.4)))
x, y = max(0, x - padding), max(0, y - padding)
w, h = min(w + 2 * padding, img.shape[1] - x), min(h + 2 * padding, img.shape[0] - y)
roi_img = img[y:y+h, x:x+w]
save_debug_image(roi_img, "06_detected_roi")
logging.info(f"Detected ROI: ({x}, {y}, {w}, {h})")
return roi_img, (x, y, w, h)
logging.info("No ROI found, using full image.")
save_debug_image(img, "06_no_roi_fallback")
return img, None
except Exception as e:
logging.error(f"ROI detection failed: {str(e)}")
save_debug_image(img, "06_roi_error_fallback")
return img, None
def detect_segments(digit_img, brightness):
"""Detect seven-segment digits with adaptive thresholds."""
try:
h, w = digit_img.shape
if h < 15 or w < 8:
logging.debug("Digit image too small for segment detection.")
return None
segment_threshold = 0.25 if brightness < 80 else 0.35
segments = {
'top': (int(w*0.1), int(w*0.9), 0, int(h*0.25)),
'middle': (int(w*0.1), int(w*0.9), int(h*0.45), int(h*0.55)),
'bottom': (int(w*0.1), int(w*0.9), int(h*0.75), h),
'left_top': (0, int(w*0.3), int(h*0.1), int(h*0.5)),
'left_bottom': (0, int(w*0.3), int(h*0.5), int(h*0.9)),
'right_top': (int(w*0.7), w, int(h*0.1), int(h*0.5)),
'right_bottom': (int(w*0.7), w, int(h*0.5), int(h*0.9))
}
segment_presence = {}
for name, (x1, x2, y1, y2) in segments.items():
x1, y1 = max(0, x1), max(0, y1)
x2, y2 = min(w, x2), min(h, y2)
region = digit_img[y1:y2, x1:x2]
if region.size == 0:
segment_presence[name] = False
continue
pixel_count = np.sum(region == 255)
total_pixels = region.size
segment_presence[name] = pixel_count / total_pixels > segment_threshold
logging.debug(f"Segment {name}: {pixel_count}/{total_pixels} = {pixel_count/total_pixels:.2f}")
digit_patterns = {
'0': ('top', 'bottom', 'left_top', 'left_bottom', 'right_top', 'right_bottom'),
'1': ('right_top', 'right_bottom'),
'2': ('top', 'middle', 'bottom', 'left_bottom', 'right_top'),
'3': ('top', 'middle', 'bottom', 'right_top', 'right_bottom'),
'4': ('middle', 'left_top', 'right_top', 'right_bottom'),
'5': ('top', 'middle', 'bottom', 'left_top', 'right_bottom'),
'6': ('top', 'middle', 'bottom', 'left_top', 'left_bottom', 'right_bottom'),
'7': ('top', 'right_top', 'right_bottom'),
'8': ('top', 'middle', 'bottom', 'left_top', 'left_bottom', 'right_top', 'right_bottom'),
'9': ('top', 'middle', 'bottom', 'left_top', 'right_top', 'right_bottom')
}
best_match, best_score = None, -1
for digit, pattern in digit_patterns.items():
matches = sum(1 for segment in pattern if segment_presence.get(segment, False))
non_matches = sum(1 for segment in segment_presence if segment not in pattern and segment_presence[segment])
score = matches - 0.15 * non_matches
if matches >= len(pattern) * 0.65:
score += 1.2
if score > best_score:
best_score = score
best_match = digit
logging.debug(f"Segment detection: {segment_presence}, Digit: {best_match}, Score: {best_score:.2f}")
return best_match
except Exception as e:
logging.error(f"Segment detection failed: {str(e)}")
return None
def perform_ocr(img, roi_bbox):
"""Perform OCR with Tesseract and seven-segment fallback."""
try:
thresh, enhanced = preprocess_image(img)
brightness = estimate_brightness(img)
pil_img = Image.fromarray(enhanced)
save_debug_image(pil_img, "07_ocr_input")
# Tesseract OCR with numeric config
custom_config = r'--oem 3 --psm 7 -c tessedit_char_whitelist=0123456789.'
text = pytesseract.image_to_string(pil_img, config=custom_config)
logging.info(f"Tesseract raw output: {text}")
# Clean and validate text
text = re.sub(r"[^\d\.]", "", text)
if text.count('.') > 1:
text = text.replace('.', '', text.count('.') - 1)
text = text.strip('.')
if text and re.fullmatch(r"^\d*\.?\d*$", text):
text = text.lstrip('0') or '0'
confidence = 95.0 if len(text.replace('.', '')) >= 2 else 90.0
logging.info(f"Validated Tesseract text: {text}, Confidence: {confidence:.2f}%")
return text, confidence
# Fallback to seven-segment detection
logging.info("Tesseract failed, using seven-segment detection.")
contours, _ = cv2.findContours(thresh, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
digits_info = []
for c in contours:
x, y, w, h = cv2.boundingRect(c)
if w > 10 and h > 15 and 0.2 <= w/h <= 1.5:
digits_info.append((x, x+w, y, y+h))
if digits_info:
digits_info.sort(key=lambda x: x[0])
recognized_text = ""
for idx, (x_min, x_max, y_min, y_max) in enumerate(digits_info):
x_min, y_min = max(0, x_min), max(0, y_min)
x_max, y_max = min(thresh.shape[1], x_max), min(thresh.shape[0], y_max)
if x_max <= x_min or y_max <= y_min:
continue
digit_crop = thresh[y_min:y_max, x_min:x_max]
save_debug_image(digit_crop, f"08_digit_crop_{idx}")
segment_digit = detect_segments(digit_crop, brightness)
if segment_digit:
recognized_text += segment_digit
elif idx < len(digits_info) - 1 and (digits_info[idx+1][0] - x_max) < 10:
recognized_text += '.' # Assume decimal point for close digits
text = re.sub(r"[^\d\.]", "", recognized_text)
if text.count('.') > 1:
text = text.replace('.', '', text.count('.') - 1)
text = text.strip('.')
if text and re.fullmatch(r"^\d*\.?\d*$", text):
text = text.lstrip('0') or '0'
confidence = 90.0
logging.info(f"Validated segment text: {text}, Confidence: {confidence:.2f}%")
return text, confidence
logging.info("No valid digits detected.")
return None, 0.0
except Exception as e:
logging.error(f"OCR failed: {str(e)}")
return None, 0.0
def extract_weight_from_image(pil_img):
"""Extract weight from a digital scale image."""
try:
img = np.array(pil_img)
img = cv2.cvtColor(img, cv2.COLOR_RGB2BGR)
save_debug_image(img, "00_input_image")
img = correct_rotation(img)
brightness = estimate_brightness(img)
conf_threshold = 0.8 if brightness > 100 else 0.6
roi_img, roi_bbox = detect_roi(img)
if roi_bbox:
conf_threshold *= 1.1 if (roi_bbox[2] * roi_bbox[3]) > (img.shape[0] * img.shape[1] * 0.3) else 1.0
result, confidence = perform_ocr(roi_img, roi_bbox)
if result and confidence >= conf_threshold * 100:
try:
weight = float(result)
if 0.01 <= weight <= 1000:
logging.info(f"Detected weight: {result} kg, Confidence: {confidence:.2f}%")
return result, confidence
logging.warning(f"Weight {result} out of range.")
except ValueError:
logging.warning(f"Invalid weight format: {result}")
logging.info("Primary OCR failed, using full image fallback.")
result, confidence = perform_ocr(img, None)
if result and confidence >= conf_threshold * 0.9 * 100:
try:
weight = float(result)
if 0.01 <= weight <= 1000:
logging.info(f"Full image weight: {result} kg, Confidence: {confidence:.2f}%")
return result, confidence
logging.warning(f"Full image weight {result} out of range.")
except ValueError:
logging.warning(f"Invalid full image weight format: {result}")
logging.info("No valid weight detected.")
return "Not detected", 0.0
except Exception as e:
logging.error(f"Weight extraction failed: {str(e)}")
return "Not detected", 0.0 |