Spaces:
Running
Running
import easyocr | |
import numpy as np | |
import cv2 | |
import re | |
import logging | |
from datetime import datetime | |
import os | |
# Set up logging | |
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s') | |
# Initialize EasyOCR | |
easyocr_reader = easyocr.Reader(['en'], gpu=False) | |
# Directory for debug images | |
DEBUG_DIR = "debug_images" | |
os.makedirs(DEBUG_DIR, exist_ok=True) | |
def save_debug_image(img, filename_suffix, prefix=""): | |
"""Save image to debug directory with timestamp.""" | |
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S_%f") | |
filename = os.path.join(DEBUG_DIR, f"{prefix}{timestamp}_{filename_suffix}.png") | |
if len(img.shape) == 3: | |
cv2.imwrite(filename, cv2.cvtColor(img, cv2.COLOR_BGR2RGB)) | |
else: | |
cv2.imwrite(filename, img) | |
logging.info(f"Saved debug image: {filename}") | |
def estimate_brightness(img): | |
"""Estimate image brightness.""" | |
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) | |
return np.mean(gray) | |
def preprocess_image(img): | |
"""Preprocess image for OCR with enhanced contrast and noise reduction.""" | |
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) | |
# Apply Gaussian blur to reduce noise | |
blurred = cv2.GaussianBlur(gray, (5, 5), 0) | |
save_debug_image(blurred, "01_preprocess_blur") | |
# Use adaptive histogram equalization for better contrast | |
clahe = cv2.createCLAHE(clipLimit=3.0, tileGridSize=(8, 8)) | |
enhanced = clahe.apply(blurred) | |
save_debug_image(enhanced, "02_preprocess_clahe") | |
# Morphological operations to enhance digits | |
kernel = cv2.getStructuringElement(cv2.MORPH_RECT, (3, 3)) | |
morphed = cv2.morphologyEx(enhanced, cv2.MORPH_CLOSE, kernel) | |
save_debug_image(morphed, "03_preprocess_morph") | |
return morphed | |
def correct_rotation(img): | |
"""Correct image rotation using edge detection.""" | |
try: | |
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) | |
blurred = cv2.GaussianBlur(gray, (5, 5), 0) | |
edges = cv2.Canny(blurred, 50, 150) | |
lines = cv2.HoughLinesP(edges, 1, np.pi / 180, threshold=50, minLineLength=30, maxLineGap=10) | |
if lines is not None: | |
angles = [np.arctan2(line[0][3] - line[0][1], line[0][2] - line[0][0]) * 180 / np.pi for line in lines] | |
angle = np.median(angles) | |
if abs(angle) > 1.5: | |
h, w = img.shape[:2] | |
center = (w // 2, h // 2) | |
M = cv2.getRotationMatrix2D(center, angle, 1.0) | |
img = cv2.warpAffine(img, M, (w, h)) | |
save_debug_image(img, "00_rotated_image") | |
logging.info(f"Applied rotation: {angle:.2f} degrees") | |
return img | |
except Exception as e: | |
logging.error(f"Rotation correction failed: {str(e)}") | |
return img | |
def detect_roi(img): | |
"""Detect region of interest (display) with refined contour filtering.""" | |
try: | |
save_debug_image(img, "04_original") | |
preprocessed = preprocess_image(img) | |
brightness_map = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) | |
# Dynamic block size based on image dimensions | |
block_size = max(11, min(31, int(img.shape[0] / 20) * 2 + 1)) | |
thresh = cv2.adaptiveThreshold(preprocessed, 255, cv2.ADAPTIVE_THRESH_GAUSSIAN_C, | |
cv2.THRESH_BINARY_INV, block_size, 2) | |
save_debug_image(thresh, "05_roi_threshold") | |
# Morphological operations to connect digit segments | |
kernel = cv2.getStructuringElement(cv2.MORPH_RECT, (5, 5)) | |
thresh = cv2.morphologyEx(thresh, cv2.MORPH_CLOSE, kernel) | |
save_debug_image(thresh, "06_roi_morph") | |
contours, _ = cv2.findContours(thresh, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE) | |
if contours: | |
img_area = img.shape[0] * img.shape[1] | |
valid_contours = [] | |
for c in contours: | |
area = cv2.contourArea(c) | |
x, y, w, h = cv2.boundingRect(c) | |
roi_brightness = np.mean(brightness_map[y:y+h, x:x+w]) | |
aspect_ratio = w / h | |
# Relaxed constraints for ROI detection | |
if (100 < area < (img_area * 0.9) and | |
0.3 <= aspect_ratio <= 20.0 and w > 40 and h > 15 and roi_brightness > 20): | |
valid_contours.append((c, area * roi_brightness)) | |
logging.debug(f"Contour: Area={area}, Aspect={aspect_ratio:.2f}, Brightness={roi_brightness:.2f}") | |
if valid_contours: | |
contour, _ = max(valid_contours, key=lambda x: x[1]) | |
x, y, w, h = cv2.boundingRect(contour) | |
# Dynamic padding based on ROI size | |
padding = max(10, min(50, int(min(w, h) * 0.2))) | |
x, y = max(0, x - padding), max(0, y - padding) | |
w, h = min(w + 2 * padding, img.shape[1] - x), min(h + 2 * padding, img.shape[0] - y) | |
roi_img = img[y:y+h, x:x+w] | |
save_debug_image(roi_img, "07_detected_roi") | |
logging.info(f"Detected ROI: ({x}, {y}, {w}, {h})") | |
return roi_img, (x, y, w, h) | |
logging.info("No ROI found, using full image.") | |
save_debug_image(img, "07_no_roi_fallback") | |
return img, None | |
except Exception as e: | |
logging.error(f"ROI detection failed: {str(e)}") | |
save_debug_image(img, "07_roi_error_fallback") | |
return img, None | |
def perform_ocr(img, roi_bbox): | |
"""Perform OCR optimized for digital displays.""" | |
try: | |
preprocessed = preprocess_image(img) | |
brightness = estimate_brightness(img) | |
# Dynamic thresholding based on brightness | |
thresh_value = 0 if brightness < 50 else (127 if brightness < 100 else 200) | |
_, thresh = cv2.threshold(preprocessed, thresh_value, 255, cv2.THRESH_BINARY_INV + cv2.THRESH_OTSU) | |
save_debug_image(thresh, "08_ocr_threshold") | |
# Morphological operations to clean up digits | |
kernel = cv2.getStructuringElement(cv2.MORPH_RECT, (3, 3)) | |
thresh = cv2.morphologyEx(thresh, cv2.MORPH_OPEN, kernel) | |
save_debug_image(thresh, "09_ocr_morph") | |
# Optimized EasyOCR parameters for seven-segment displays | |
results = easyocr_reader.readtext(thresh, detail=1, paragraph=False, | |
contrast_ths=0.1, adjust_contrast=1.5, | |
text_threshold=0.2, mag_ratio=3.0, | |
allowlist='0123456789.', batch_size=1, y_ths=0.2) | |
logging.info(f"EasyOCR results: {results}") | |
if not results: | |
logging.info("No text detected, trying fallback parameters.") | |
results = easyocr_reader.readtext(thresh, detail=1, paragraph=False, | |
contrast_ths=0.05, adjust_contrast=2.0, | |
text_threshold=0.1, mag_ratio=4.0, | |
allowlist='0123456789.', batch_size=1, y_ths=0.2) | |
save_debug_image(thresh, "09_fallback_threshold") | |
if not results: | |
logging.info("No digits found.") | |
return None, 0.0 | |
digits_info = [] | |
for (bbox, text, conf) in results: | |
(x1, y1), (x2, y2), (x3, y3), (x4, y4) = bbox | |
h_bbox = max(y1, y2, y3, y4) - min(y1, y2, y3, y4) | |
if (text.isdigit() or text == '.') and h_bbox > 5 and conf > 0.1: | |
x_min, x_max = int(min(x1, x4)), int(max(x2, x3)) | |
y_min, y_max = int(min(y1, y2)), int(max(y3, y4)) | |
digits_info.append((x_min, x_max, y_min, y_max, text, conf)) | |
if not digits_info: | |
logging.info("No valid digits after filtering.") | |
return None, 0.0 | |
digits_info.sort(key=lambda x: x[0]) | |
recognized_text = "" | |
total_conf = 0.0 | |
conf_count = 0 | |
for _, _, _, _, char, conf in digits_info: | |
recognized_text += char | |
total_conf += conf | |
conf_count += 1 | |
avg_conf = total_conf / conf_count if conf_count > 0 else 0.0 | |
logging.info(f"Recognized text: {recognized_text}, Average confidence: {avg_conf:.2f}") | |
# Validate and clean the recognized text | |
text = re.sub(r"[^\d\.]", "", recognized_text) | |
if text.count('.') > 1: | |
text = text.replace('.', '', text.count('.') - 1) | |
text = text.strip('.') | |
if text and re.fullmatch(r"^\d*\.?\d*$", text): | |
text = text.lstrip('0') or '0' | |
if text == '0' and avg_conf < 0.9: | |
avg_conf *= 0.7 | |
return text, avg_conf * 100 | |
logging.info(f"Text '{recognized_text}' failed validation.") | |
return None, 0.0 | |
except Exception as e: | |
logging.error(f"OCR failed: {str(e)}") | |
return None, 0.0 | |
def extract_weight_from_image(pil_img): | |
"""Extract weight from a digital scale image.""" | |
try: | |
img = np.array(pil_img) | |
img = cv2.cvtColor(img, cv2.COLOR_RGB2BGR) | |
save_debug_image(img, "00_input_image") | |
img = correct_rotation(img) | |
brightness = estimate_brightness(img) | |
conf_threshold = 0.5 if brightness > 120 else (0.3 if brightness > 60 else 0.2) | |
roi_img, roi_bbox = detect_roi(img) | |
if roi_bbox: | |
conf_threshold *= 1.1 if (roi_bbox[2] * roi_bbox[3]) > (img.shape[0] * img.shape[1] * 0.4) else 1.0 | |
result, confidence = perform_ocr(roi_img, roi_bbox) | |
if result and confidence >= conf_threshold * 100: | |
try: | |
weight = float(result) | |
if 0.00001 <= weight <= 10000: | |
logging.info(f"Detected weight: {result} kg, Confidence: {confidence:.2f}%") | |
return result, confidence | |
logging.warning(f"Weight {result} out of range.") | |
except ValueError: | |
logging.warning(f"Invalid weight format: {result}") | |
logging.info("Primary OCR failed, using full image fallback.") | |
result, confidence = perform_ocr(img, None) | |
if result and confidence >= conf_threshold * 0.8 * 100: | |
try: | |
weight = float(result) | |
if 0.00001 <= weight <= 10000: | |
logging.info(f"Full image weight: {result} kg, Confidence: {confidence:.2f}%") | |
return result, confidence | |
logging.warning(f"Full image weight {result} out of range.") | |
except ValueError: | |
logging.warning(f"Invalid full image weight format: {result}") | |
logging.info("No valid weight detected.") | |
return "Not detected", 0.0 | |
except Exception as e: | |
logging.error(f"Weight extraction failed: {str(e)}") | |
return "Not detected", 0.0 |