AutoWeightLogger1 / ocr_engine.py
Sanjayraju30's picture
Update ocr_engine.py
6ae35d6 verified
raw
history blame
10.8 kB
import easyocr
import numpy as np
import cv2
import re
import logging
from datetime import datetime
import os
# Set up logging
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s')
# Initialize EasyOCR
easyocr_reader = easyocr.Reader(['en'], gpu=False)
# Directory for debug images
DEBUG_DIR = "debug_images"
os.makedirs(DEBUG_DIR, exist_ok=True)
def save_debug_image(img, filename_suffix, prefix=""):
"""Save image to debug directory with timestamp."""
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S_%f")
filename = os.path.join(DEBUG_DIR, f"{prefix}{timestamp}_{filename_suffix}.png")
if len(img.shape) == 3:
cv2.imwrite(filename, cv2.cvtColor(img, cv2.COLOR_BGR2RGB))
else:
cv2.imwrite(filename, img)
logging.info(f"Saved debug image: {filename}")
def estimate_brightness(img):
"""Estimate image brightness."""
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
return np.mean(gray)
def preprocess_image(img):
"""Preprocess image for OCR with enhanced contrast and noise reduction."""
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
# Apply Gaussian blur to reduce noise
blurred = cv2.GaussianBlur(gray, (5, 5), 0)
save_debug_image(blurred, "01_preprocess_blur")
# Use adaptive histogram equalization for better contrast
clahe = cv2.createCLAHE(clipLimit=3.0, tileGridSize=(8, 8))
enhanced = clahe.apply(blurred)
save_debug_image(enhanced, "02_preprocess_clahe")
# Morphological operations to enhance digits
kernel = cv2.getStructuringElement(cv2.MORPH_RECT, (3, 3))
morphed = cv2.morphologyEx(enhanced, cv2.MORPH_CLOSE, kernel)
save_debug_image(morphed, "03_preprocess_morph")
return morphed
def correct_rotation(img):
"""Correct image rotation using edge detection."""
try:
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
blurred = cv2.GaussianBlur(gray, (5, 5), 0)
edges = cv2.Canny(blurred, 50, 150)
lines = cv2.HoughLinesP(edges, 1, np.pi / 180, threshold=50, minLineLength=30, maxLineGap=10)
if lines is not None:
angles = [np.arctan2(line[0][3] - line[0][1], line[0][2] - line[0][0]) * 180 / np.pi for line in lines]
angle = np.median(angles)
if abs(angle) > 1.5:
h, w = img.shape[:2]
center = (w // 2, h // 2)
M = cv2.getRotationMatrix2D(center, angle, 1.0)
img = cv2.warpAffine(img, M, (w, h))
save_debug_image(img, "00_rotated_image")
logging.info(f"Applied rotation: {angle:.2f} degrees")
return img
except Exception as e:
logging.error(f"Rotation correction failed: {str(e)}")
return img
def detect_roi(img):
"""Detect region of interest (display) with refined contour filtering."""
try:
save_debug_image(img, "04_original")
preprocessed = preprocess_image(img)
brightness_map = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
# Dynamic block size based on image dimensions
block_size = max(11, min(31, int(img.shape[0] / 20) * 2 + 1))
thresh = cv2.adaptiveThreshold(preprocessed, 255, cv2.ADAPTIVE_THRESH_GAUSSIAN_C,
cv2.THRESH_BINARY_INV, block_size, 2)
save_debug_image(thresh, "05_roi_threshold")
# Morphological operations to connect digit segments
kernel = cv2.getStructuringElement(cv2.MORPH_RECT, (5, 5))
thresh = cv2.morphologyEx(thresh, cv2.MORPH_CLOSE, kernel)
save_debug_image(thresh, "06_roi_morph")
contours, _ = cv2.findContours(thresh, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
if contours:
img_area = img.shape[0] * img.shape[1]
valid_contours = []
for c in contours:
area = cv2.contourArea(c)
x, y, w, h = cv2.boundingRect(c)
roi_brightness = np.mean(brightness_map[y:y+h, x:x+w])
aspect_ratio = w / h
# Relaxed constraints for ROI detection
if (100 < area < (img_area * 0.9) and
0.3 <= aspect_ratio <= 20.0 and w > 40 and h > 15 and roi_brightness > 20):
valid_contours.append((c, area * roi_brightness))
logging.debug(f"Contour: Area={area}, Aspect={aspect_ratio:.2f}, Brightness={roi_brightness:.2f}")
if valid_contours:
contour, _ = max(valid_contours, key=lambda x: x[1])
x, y, w, h = cv2.boundingRect(contour)
# Dynamic padding based on ROI size
padding = max(10, min(50, int(min(w, h) * 0.2)))
x, y = max(0, x - padding), max(0, y - padding)
w, h = min(w + 2 * padding, img.shape[1] - x), min(h + 2 * padding, img.shape[0] - y)
roi_img = img[y:y+h, x:x+w]
save_debug_image(roi_img, "07_detected_roi")
logging.info(f"Detected ROI: ({x}, {y}, {w}, {h})")
return roi_img, (x, y, w, h)
logging.info("No ROI found, using full image.")
save_debug_image(img, "07_no_roi_fallback")
return img, None
except Exception as e:
logging.error(f"ROI detection failed: {str(e)}")
save_debug_image(img, "07_roi_error_fallback")
return img, None
def perform_ocr(img, roi_bbox):
"""Perform OCR optimized for digital displays."""
try:
preprocessed = preprocess_image(img)
brightness = estimate_brightness(img)
# Dynamic thresholding based on brightness
thresh_value = 0 if brightness < 50 else (127 if brightness < 100 else 200)
_, thresh = cv2.threshold(preprocessed, thresh_value, 255, cv2.THRESH_BINARY_INV + cv2.THRESH_OTSU)
save_debug_image(thresh, "08_ocr_threshold")
# Morphological operations to clean up digits
kernel = cv2.getStructuringElement(cv2.MORPH_RECT, (3, 3))
thresh = cv2.morphologyEx(thresh, cv2.MORPH_OPEN, kernel)
save_debug_image(thresh, "09_ocr_morph")
# Optimized EasyOCR parameters for seven-segment displays
results = easyocr_reader.readtext(thresh, detail=1, paragraph=False,
contrast_ths=0.1, adjust_contrast=1.5,
text_threshold=0.2, mag_ratio=3.0,
allowlist='0123456789.', batch_size=1, y_ths=0.2)
logging.info(f"EasyOCR results: {results}")
if not results:
logging.info("No text detected, trying fallback parameters.")
results = easyocr_reader.readtext(thresh, detail=1, paragraph=False,
contrast_ths=0.05, adjust_contrast=2.0,
text_threshold=0.1, mag_ratio=4.0,
allowlist='0123456789.', batch_size=1, y_ths=0.2)
save_debug_image(thresh, "09_fallback_threshold")
if not results:
logging.info("No digits found.")
return None, 0.0
digits_info = []
for (bbox, text, conf) in results:
(x1, y1), (x2, y2), (x3, y3), (x4, y4) = bbox
h_bbox = max(y1, y2, y3, y4) - min(y1, y2, y3, y4)
if (text.isdigit() or text == '.') and h_bbox > 5 and conf > 0.1:
x_min, x_max = int(min(x1, x4)), int(max(x2, x3))
y_min, y_max = int(min(y1, y2)), int(max(y3, y4))
digits_info.append((x_min, x_max, y_min, y_max, text, conf))
if not digits_info:
logging.info("No valid digits after filtering.")
return None, 0.0
digits_info.sort(key=lambda x: x[0])
recognized_text = ""
total_conf = 0.0
conf_count = 0
for _, _, _, _, char, conf in digits_info:
recognized_text += char
total_conf += conf
conf_count += 1
avg_conf = total_conf / conf_count if conf_count > 0 else 0.0
logging.info(f"Recognized text: {recognized_text}, Average confidence: {avg_conf:.2f}")
# Validate and clean the recognized text
text = re.sub(r"[^\d\.]", "", recognized_text)
if text.count('.') > 1:
text = text.replace('.', '', text.count('.') - 1)
text = text.strip('.')
if text and re.fullmatch(r"^\d*\.?\d*$", text):
text = text.lstrip('0') or '0'
if text == '0' and avg_conf < 0.9:
avg_conf *= 0.7
return text, avg_conf * 100
logging.info(f"Text '{recognized_text}' failed validation.")
return None, 0.0
except Exception as e:
logging.error(f"OCR failed: {str(e)}")
return None, 0.0
def extract_weight_from_image(pil_img):
"""Extract weight from a digital scale image."""
try:
img = np.array(pil_img)
img = cv2.cvtColor(img, cv2.COLOR_RGB2BGR)
save_debug_image(img, "00_input_image")
img = correct_rotation(img)
brightness = estimate_brightness(img)
conf_threshold = 0.5 if brightness > 120 else (0.3 if brightness > 60 else 0.2)
roi_img, roi_bbox = detect_roi(img)
if roi_bbox:
conf_threshold *= 1.1 if (roi_bbox[2] * roi_bbox[3]) > (img.shape[0] * img.shape[1] * 0.4) else 1.0
result, confidence = perform_ocr(roi_img, roi_bbox)
if result and confidence >= conf_threshold * 100:
try:
weight = float(result)
if 0.00001 <= weight <= 10000:
logging.info(f"Detected weight: {result} kg, Confidence: {confidence:.2f}%")
return result, confidence
logging.warning(f"Weight {result} out of range.")
except ValueError:
logging.warning(f"Invalid weight format: {result}")
logging.info("Primary OCR failed, using full image fallback.")
result, confidence = perform_ocr(img, None)
if result and confidence >= conf_threshold * 0.8 * 100:
try:
weight = float(result)
if 0.00001 <= weight <= 10000:
logging.info(f"Full image weight: {result} kg, Confidence: {confidence:.2f}%")
return result, confidence
logging.warning(f"Full image weight {result} out of range.")
except ValueError:
logging.warning(f"Invalid full image weight format: {result}")
logging.info("No valid weight detected.")
return "Not detected", 0.0
except Exception as e:
logging.error(f"Weight extraction failed: {str(e)}")
return "Not detected", 0.0