File size: 10,836 Bytes
975f9c6
 
 
 
5234a64
d373620
 
5234a64
8254c9e
9ac49a2
5234a64
9ac49a2
5234a64
 
d373620
 
 
 
 
8254c9e
d373620
 
8254c9e
6ae35d6
8254c9e
d373620
9ac49a2
d373620
0f29b7c
8254c9e
0f29b7c
9ac49a2
d373620
8254c9e
6ae35d6
c320b80
6ae35d6
 
 
 
 
 
8254c9e
6ae35d6
 
 
 
 
3137c41
 
6ae35d6
3137c41
6ae35d6
 
 
8254c9e
3137c41
 
a6294cd
6ae35d6
8254c9e
3137c41
 
 
 
8254c9e
3137c41
 
 
 
c320b80
9ac49a2
6ae35d6
5234a64
6ae35d6
8254c9e
 
6ae35d6
 
a6294cd
8254c9e
6ae35d6
 
 
 
 
a6294cd
373b0d2
8254c9e
 
 
 
 
 
 
 
6ae35d6
 
 
 
8254c9e
 
 
 
 
6ae35d6
 
8254c9e
 
 
6ae35d6
8254c9e
 
 
 
6ae35d6
9ac49a2
5234a64
9ac49a2
6ae35d6
9ac49a2
 
6ae35d6
 
9ac49a2
8254c9e
9ac49a2
6ae35d6
 
 
 
 
 
 
 
 
 
d373620
6ae35d6
 
 
753fcb8
8254c9e
6ae35d6
 
 
 
 
 
 
 
9ac49a2
8254c9e
6ae35d6
753fcb8
9ac49a2
 
 
 
6ae35d6
9ac49a2
 
 
753fcb8
6ae35d6
 
 
 
9ac49a2
 
6ae35d6
 
 
 
 
 
753fcb8
6ae35d6
 
 
 
9ac49a2
753fcb8
9ac49a2
6ae35d6
373b0d2
6ae35d6
 
 
 
8254c9e
6ae35d6
9ac49a2
6ae35d6
 
975f9c6
9ac49a2
8254c9e
9ac49a2
 
 
c320b80
3137c41
9ac49a2
6ae35d6
3137c41
b613b80
 
6ae35d6
9ac49a2
6ae35d6
 
9ac49a2
6ae35d6
8254c9e
6ae35d6
 
 
9ac49a2
6ae35d6
9ac49a2
6ae35d6
 
 
 
 
 
 
 
 
 
 
b613b80
6ae35d6
 
b613b80
8254c9e
b613b80
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
import easyocr
import numpy as np
import cv2
import re
import logging
from datetime import datetime
import os

# Set up logging
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s')

# Initialize EasyOCR
easyocr_reader = easyocr.Reader(['en'], gpu=False)

# Directory for debug images
DEBUG_DIR = "debug_images"
os.makedirs(DEBUG_DIR, exist_ok=True)

def save_debug_image(img, filename_suffix, prefix=""):
    """Save image to debug directory with timestamp."""
    timestamp = datetime.now().strftime("%Y%m%d_%H%M%S_%f")
    filename = os.path.join(DEBUG_DIR, f"{prefix}{timestamp}_{filename_suffix}.png")
    if len(img.shape) == 3:
        cv2.imwrite(filename, cv2.cvtColor(img, cv2.COLOR_BGR2RGB))
    else:
        cv2.imwrite(filename, img)
    logging.info(f"Saved debug image: {filename}")

def estimate_brightness(img):
    """Estimate image brightness."""
    gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
    return np.mean(gray)

def preprocess_image(img):
    """Preprocess image for OCR with enhanced contrast and noise reduction."""
    gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
    # Apply Gaussian blur to reduce noise
    blurred = cv2.GaussianBlur(gray, (5, 5), 0)
    save_debug_image(blurred, "01_preprocess_blur")
    # Use adaptive histogram equalization for better contrast
    clahe = cv2.createCLAHE(clipLimit=3.0, tileGridSize=(8, 8))
    enhanced = clahe.apply(blurred)
    save_debug_image(enhanced, "02_preprocess_clahe")
    # Morphological operations to enhance digits
    kernel = cv2.getStructuringElement(cv2.MORPH_RECT, (3, 3))
    morphed = cv2.morphologyEx(enhanced, cv2.MORPH_CLOSE, kernel)
    save_debug_image(morphed, "03_preprocess_morph")
    return morphed

def correct_rotation(img):
    """Correct image rotation using edge detection."""
    try:
        gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
        blurred = cv2.GaussianBlur(gray, (5, 5), 0)
        edges = cv2.Canny(blurred, 50, 150)
        lines = cv2.HoughLinesP(edges, 1, np.pi / 180, threshold=50, minLineLength=30, maxLineGap=10)
        if lines is not None:
            angles = [np.arctan2(line[0][3] - line[0][1], line[0][2] - line[0][0]) * 180 / np.pi for line in lines]
            angle = np.median(angles)
            if abs(angle) > 1.5:
                h, w = img.shape[:2]
                center = (w // 2, h // 2)
                M = cv2.getRotationMatrix2D(center, angle, 1.0)
                img = cv2.warpAffine(img, M, (w, h))
                save_debug_image(img, "00_rotated_image")
                logging.info(f"Applied rotation: {angle:.2f} degrees")
        return img
    except Exception as e:
        logging.error(f"Rotation correction failed: {str(e)}")
        return img

def detect_roi(img):
    """Detect region of interest (display) with refined contour filtering."""
    try:
        save_debug_image(img, "04_original")
        preprocessed = preprocess_image(img)
        brightness_map = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
        # Dynamic block size based on image dimensions
        block_size = max(11, min(31, int(img.shape[0] / 20) * 2 + 1))
        thresh = cv2.adaptiveThreshold(preprocessed, 255, cv2.ADAPTIVE_THRESH_GAUSSIAN_C, 
                                       cv2.THRESH_BINARY_INV, block_size, 2)
        save_debug_image(thresh, "05_roi_threshold")
        # Morphological operations to connect digit segments
        kernel = cv2.getStructuringElement(cv2.MORPH_RECT, (5, 5))
        thresh = cv2.morphologyEx(thresh, cv2.MORPH_CLOSE, kernel)
        save_debug_image(thresh, "06_roi_morph")
        contours, _ = cv2.findContours(thresh, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
        
        if contours:
            img_area = img.shape[0] * img.shape[1]
            valid_contours = []
            for c in contours:
                area = cv2.contourArea(c)
                x, y, w, h = cv2.boundingRect(c)
                roi_brightness = np.mean(brightness_map[y:y+h, x:x+w])
                aspect_ratio = w / h
                # Relaxed constraints for ROI detection
                if (100 < area < (img_area * 0.9) and 
                    0.3 <= aspect_ratio <= 20.0 and w > 40 and h > 15 and roi_brightness > 20):
                    valid_contours.append((c, area * roi_brightness))
                    logging.debug(f"Contour: Area={area}, Aspect={aspect_ratio:.2f}, Brightness={roi_brightness:.2f}")
            
            if valid_contours:
                contour, _ = max(valid_contours, key=lambda x: x[1])
                x, y, w, h = cv2.boundingRect(contour)
                # Dynamic padding based on ROI size
                padding = max(10, min(50, int(min(w, h) * 0.2)))
                x, y = max(0, x - padding), max(0, y - padding)
                w, h = min(w + 2 * padding, img.shape[1] - x), min(h + 2 * padding, img.shape[0] - y)
                roi_img = img[y:y+h, x:x+w]
                save_debug_image(roi_img, "07_detected_roi")
                logging.info(f"Detected ROI: ({x}, {y}, {w}, {h})")
                return roi_img, (x, y, w, h)
        
        logging.info("No ROI found, using full image.")
        save_debug_image(img, "07_no_roi_fallback")
        return img, None
    except Exception as e:
        logging.error(f"ROI detection failed: {str(e)}")
        save_debug_image(img, "07_roi_error_fallback")
        return img, None

def perform_ocr(img, roi_bbox):
    """Perform OCR optimized for digital displays."""
    try:
        preprocessed = preprocess_image(img)
        brightness = estimate_brightness(img)
        # Dynamic thresholding based on brightness
        thresh_value = 0 if brightness < 50 else (127 if brightness < 100 else 200)
        _, thresh = cv2.threshold(preprocessed, thresh_value, 255, cv2.THRESH_BINARY_INV + cv2.THRESH_OTSU)
        save_debug_image(thresh, "08_ocr_threshold")
        # Morphological operations to clean up digits
        kernel = cv2.getStructuringElement(cv2.MORPH_RECT, (3, 3))
        thresh = cv2.morphologyEx(thresh, cv2.MORPH_OPEN, kernel)
        save_debug_image(thresh, "09_ocr_morph")
        
        # Optimized EasyOCR parameters for seven-segment displays
        results = easyocr_reader.readtext(thresh, detail=1, paragraph=False, 
                                          contrast_ths=0.1, adjust_contrast=1.5, 
                                          text_threshold=0.2, mag_ratio=3.0, 
                                          allowlist='0123456789.', batch_size=1, y_ths=0.2)
        
        logging.info(f"EasyOCR results: {results}")
        if not results:
            logging.info("No text detected, trying fallback parameters.")
            results = easyocr_reader.readtext(thresh, detail=1, paragraph=False, 
                                              contrast_ths=0.05, adjust_contrast=2.0, 
                                              text_threshold=0.1, mag_ratio=4.0, 
                                              allowlist='0123456789.', batch_size=1, y_ths=0.2)
            save_debug_image(thresh, "09_fallback_threshold")
        
        if not results:
            logging.info("No digits found.")
            return None, 0.0

        digits_info = []
        for (bbox, text, conf) in results:
            (x1, y1), (x2, y2), (x3, y3), (x4, y4) = bbox
            h_bbox = max(y1, y2, y3, y4) - min(y1, y2, y3, y4)
            if (text.isdigit() or text == '.') and h_bbox > 5 and conf > 0.1:
                x_min, x_max = int(min(x1, x4)), int(max(x2, x3))
                y_min, y_max = int(min(y1, y2)), int(max(y3, y4))
                digits_info.append((x_min, x_max, y_min, y_max, text, conf))

        if not digits_info:
            logging.info("No valid digits after filtering.")
            return None, 0.0

        digits_info.sort(key=lambda x: x[0])
        recognized_text = ""
        total_conf = 0.0
        conf_count = 0
        for _, _, _, _, char, conf in digits_info:
            recognized_text += char
            total_conf += conf
            conf_count += 1
        
        avg_conf = total_conf / conf_count if conf_count > 0 else 0.0
        logging.info(f"Recognized text: {recognized_text}, Average confidence: {avg_conf:.2f}")

        # Validate and clean the recognized text
        text = re.sub(r"[^\d\.]", "", recognized_text)
        if text.count('.') > 1:
            text = text.replace('.', '', text.count('.') - 1)
        text = text.strip('.')
        if text and re.fullmatch(r"^\d*\.?\d*$", text):
            text = text.lstrip('0') or '0'
            if text == '0' and avg_conf < 0.9:
                avg_conf *= 0.7
            return text, avg_conf * 100
        logging.info(f"Text '{recognized_text}' failed validation.")
        return None, 0.0
    except Exception as e:
        logging.error(f"OCR failed: {str(e)}")
        return None, 0.0

def extract_weight_from_image(pil_img):
    """Extract weight from a digital scale image."""
    try:
        img = np.array(pil_img)
        img = cv2.cvtColor(img, cv2.COLOR_RGB2BGR)
        save_debug_image(img, "00_input_image")
        img = correct_rotation(img)
        brightness = estimate_brightness(img)
        conf_threshold = 0.5 if brightness > 120 else (0.3 if brightness > 60 else 0.2)

        roi_img, roi_bbox = detect_roi(img)
        if roi_bbox:
            conf_threshold *= 1.1 if (roi_bbox[2] * roi_bbox[3]) > (img.shape[0] * img.shape[1] * 0.4) else 1.0

        result, confidence = perform_ocr(roi_img, roi_bbox)
        if result and confidence >= conf_threshold * 100:
            try:
                weight = float(result)
                if 0.00001 <= weight <= 10000:
                    logging.info(f"Detected weight: {result} kg, Confidence: {confidence:.2f}%")
                    return result, confidence
                logging.warning(f"Weight {result} out of range.")
            except ValueError:
                logging.warning(f"Invalid weight format: {result}")

        logging.info("Primary OCR failed, using full image fallback.")
        result, confidence = perform_ocr(img, None)
        if result and confidence >= conf_threshold * 0.8 * 100:
            try:
                weight = float(result)
                if 0.00001 <= weight <= 10000:
                    logging.info(f"Full image weight: {result} kg, Confidence: {confidence:.2f}%")
                    return result, confidence
                logging.warning(f"Full image weight {result} out of range.")
            except ValueError:
                logging.warning(f"Invalid full image weight format: {result}")

        logging.info("No valid weight detected.")
        return "Not detected", 0.0
    except Exception as e:
        logging.error(f"Weight extraction failed: {str(e)}")
        return "Not detected", 0.0