File size: 35,087 Bytes
1ef648a
 
 
 
 
 
 
 
76bfb75
bddf29f
 
a2fcce4
6a89968
2d48be5
7f91fc3
 
8cac918
7f91fc3
8cac918
 
 
 
 
 
7f91fc3
8cac918
 
7f91fc3
8cac918
7f91fc3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8cac918
 
7f91fc3
 
 
 
 
 
6a89968
7f91fc3
 
 
 
 
 
 
 
 
6a89968
7f91fc3
7e1f943
4119a04
6a89968
a2fcce4
4119a04
61e6b62
6a89968
a2fcce4
443053b
8c3b0f0
 
 
 
 
 
 
 
 
 
39dbf03
 
 
 
 
 
 
 
 
8c3b0f0
 
 
 
 
 
 
8b497ae
8c3b0f0
7f8700c
8c3b0f0
 
39dbf03
 
 
8b497ae
 
 
 
8c3b0f0
ea95a7e
 
50515cb
 
 
 
b7709fc
7386d73
 
b7709fc
 
7386d73
 
b7709fc
 
a2fcce4
b7709fc
35e172a
 
 
 
 
8c3b0f0
 
35e172a
8c3b0f0
35e172a
 
 
 
 
 
 
 
 
 
8c3b0f0
 
 
 
8c34617
 
b7709fc
 
 
 
 
 
452c821
8c34617
b7709fc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8c3b0f0
a2fcce4
8c3b0f0
35e172a
2e7a421
 
35e172a
2e7a421
0e7ae0f
b4b6a14
35e172a
ee949ff
3a168c3
e46b418
9f9f9bd
6a89968
b4b6a14
 
 
 
 
 
 
 
 
2e7a421
b4b6a14
 
 
 
 
2e7a421
b4b6a14
 
 
0e7ae0f
2e7a421
b4b6a14
 
 
 
35e172a
 
0e7ae0f
 
2e7a421
6a89968
a55daf9
887a7c1
35e172a
8c3b0f0
 
5a0f2dc
 
 
 
 
efb3f07
 
 
 
 
 
89ee992
 
 
 
efb3f07
89ee992
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8c3b0f0
5a0f2dc
4259c64
 
e46b418
9f9f9bd
4259c64
 
 
 
6a89968
5a0f2dc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4259c64
 
6a89968
a55daf9
5a0f2dc
 
 
 
 
 
 
 
 
8c3b0f0
efb3f07
 
 
 
 
 
 
 
 
3a814a1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b59ee01
2b42392
b59ee01
9f9f9bd
 
 
 
 
b59ee01
e40f174
9f9f9bd
 
 
 
 
 
e40f174
 
9f9f9bd
 
 
 
e40f174
9f9f9bd
 
 
e40f174
9f9f9bd
e40f174
9f9f9bd
 
 
 
 
 
 
e40f174
 
 
9f9f9bd
e40f174
 
 
 
e46b418
e40f174
a0f12e7
 
3a814a1
6a89968
3a814a1
a0f12e7
af1e983
 
3a814a1
6a89968
aab8d10
3a814a1
6a89968
aab8d10
f97b86a
 
e46b418
 
9f9f9bd
3a814a1
a0f12e7
 
e46b418
a0f12e7
 
e46b418
9f9f9bd
6a89968
b59ee01
e46b418
b59ee01
9f9f9bd
e46b418
 
 
b59ee01
9f9f9bd
e46b418
 
0449345
 
 
 
 
af1e983
 
 
 
f97b86a
 
af1e983
 
 
f97b86a
3a814a1
a0f12e7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3a814a1
 
 
f97b86a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3a814a1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a2fcce4
6a89968
b446f1b
8c3b0f0
a2fcce4
35e172a
 
6a89968
35e172a
 
cb90440
6a89968
b7709fc
 
 
e636253
35e172a
e636253
a55daf9
6a89968
e636253
6a89968
 
e636253
35e172a
6a89968
efb3f07
5a0f2dc
f7c68fc
 
5a0f2dc
 
 
a55daf9
6a89968
5a0f2dc
6a89968
 
efb3f07
2fbc9fe
 
 
 
4169bb8
bd96e0d
3a814a1
6d406c0
 
bd96e0d
3f53103
 
b59ee01
 
bd96e0d
3a814a1
6a89968
bd96e0d
5a0f2dc
3a814a1
 
 
 
8c3b0f0
df711e3
8c3b0f0
a2fcce4
6a89968
 
 
 
 
 
 
bddf29f
6a89968
df711e3
 
 
 
 
e4d07f2
f1eb71f
6a89968
bd96e0d
 
af1e983
 
 
 
 
 
 
 
3e19acf
af1e983
 
 
3e19acf
af1e983
 
 
3e19acf
af1e983
 
 
3e19acf
af1e983
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0449345
af1e983
 
 
 
 
3d103e2
0449345
3a814a1
 
af1e983
3e19acf
 
0449345
 
 
 
a55daf9
38b2a27
 
 
3e19acf
 
 
 
 
 
38b2a27
3e19acf
 
 
 
 
f80d2db
e636253
f80d2db
6a89968
3a814a1
443053b
e4d07f2
8b497ae
e636253
 
6a89968
e636253
 
8b497ae
bddf29f
8b497ae
1398651
 
5130254
0449345
 
5130254
21e8468
 
de38b62
 
 
 
bddf29f
 
 
99fe899
1398651
 
 
0b34e59
f64fef3
abe9790
3e19acf
f64fef3
0b34e59
5c716b2
1bf26c9
4119a04
1bf26c9
4119a04
5c957ad
5946b43
81c73a1
 
de38b62
 
81c73a1
5946b43
4119a04
294c24c
4119a04
 
fa36f72
db05398
e9c524f
5c957ad
 
8c3b0f0
60cbd2f
5946b43
8c3b0f0
5c957ad
77698e2
7f91fc3
4119a04
d95655c
 
76bfb75
 
0b34e59
1446dbe
7e1f943
 
21e8468
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
import csv
import sys

# Increase CSV field size limit
csv.field_size_limit(sys.maxsize)



import gradio as gr
import pandas as pd

def data_pre_processing(file_responses):
    consoleMessage_and_Print("Starting data pre-processing...")
    # Financial Weights can be anything (ultimately the row-wise weights are aggregated and the corresponding fractions are obtained from that rows' total tax payed)
    
    try: # Define the columns to be processed
        
        # Developing Numeric Columns
        # Convert columns to numeric and fill NaN values with 0
        file_responses['Personal_TaxDirection_1_TaxWeightageAllocated'] = pd.to_numeric(file_responses['Personal_TaxDirection_1_TaxWeightageAllocated'], errors='coerce').fillna(0)
        file_responses['Personal_TaxDirection_2_TaxWeightageAllocated'] = pd.to_numeric(file_responses['Personal_TaxDirection_2_TaxWeightageAllocated'], errors='coerce').fillna(0)
        file_responses['Personal_TaxDirection_3_TaxWeightageAllocated'] = pd.to_numeric(file_responses['Personal_TaxDirection_3_TaxWeightageAllocated'], errors='coerce').fillna(0)
        file_responses['Latest estimated Tax payment?'] = pd.to_numeric(file_responses['Latest estimated Tax payment?'], errors='coerce').fillna(0)
        
        # Adding a new column 'TotalWeightageAllocated' by summing specific columns by their names
        file_responses['TotalWeightageAllocated'] = file_responses['Personal_TaxDirection_1_TaxWeightageAllocated'] + file_responses['Personal_TaxDirection_2_TaxWeightageAllocated'] + file_responses['Personal_TaxDirection_3_TaxWeightageAllocated']

        

        # Creating Datasets (we assume everything has been provided to us in English, or the translations have been done already)
        # Renaming the datasets into similar column headings
        initial_dataset_1 = file_responses.rename(columns={
            'Personal_TaxDirection_1_Wish': 'Problem_Description',
            'Personal_TaxDirection_1_GeographicalLocation': 'Geographical_Location',
            'Personal_TaxDirection_1_TaxWeightageAllocated': 'Financial_Weight'
        })[['Problem_Description', 'Geographical_Location', 'Financial_Weight']]
        
        initial_dataset_2 = file_responses.rename(columns={
            'Personal_TaxDirection_2_Wish': 'Problem_Description',
            'Personal_TaxDirection_2_GeographicalLocation': 'Geographical_Location',
            'Personal_TaxDirection_2_TaxWeightageAllocated': 'Financial_Weight'
        })[['Problem_Description', 'Geographical_Location', 'Financial_Weight']]
        
        initial_dataset_3 = file_responses.rename(columns={
            'Personal_TaxDirection_3_Wish': 'Problem_Description',
            'Personal_TaxDirection_3_GeographicalLocation': 'Geographical_Location',
            'Personal_TaxDirection_3_TaxWeightageAllocated': 'Financial_Weight'
        })[['Problem_Description', 'Geographical_Location', 'Financial_Weight']]


        
        # Calculating the actual TaxAmount to be allocated against each WISH (by overwriting the newly created columns)
        initial_dataset_1['Financial_Weight'] = file_responses['Personal_TaxDirection_1_TaxWeightageAllocated'] * file_responses['Latest estimated Tax payment?'] / file_responses['TotalWeightageAllocated']
        initial_dataset_2['Financial_Weight'] = file_responses['Personal_TaxDirection_2_TaxWeightageAllocated'] * file_responses['Latest estimated Tax payment?'] / file_responses['TotalWeightageAllocated']
        initial_dataset_3['Financial_Weight'] = file_responses['Personal_TaxDirection_3_TaxWeightageAllocated'] * file_responses['Latest estimated Tax payment?'] / file_responses['TotalWeightageAllocated']
        
        # Removing useless rows # Drop rows where Problem_Description is NaN or an empty string
        initial_dataset_1 = initial_dataset_1.dropna(subset=['Problem_Description'], axis=0)
        initial_dataset_2 = initial_dataset_2.dropna(subset=['Problem_Description'], axis=0)
        initial_dataset_3 = initial_dataset_3.dropna(subset=['Problem_Description'], axis=0)
        
        # Convert 'Problem_Description' column to string type
        initial_dataset_1['Problem_Description'] = initial_dataset_1['Problem_Description'].astype(str)
        initial_dataset_2['Problem_Description'] = initial_dataset_2['Problem_Description'].astype(str)
        initial_dataset_3['Problem_Description'] = initial_dataset_3['Problem_Description'].astype(str)
        
        # Merging the Datasets # Vertically concatenating (merging) the 3 DataFrames
        merged_dataset = pd.concat([initial_dataset_1, initial_dataset_2, initial_dataset_3], ignore_index=True)
        
        # Different return can be used to check the processing
        consoleMessage_and_Print("Data pre-processing completed.")
        return merged_dataset
        
    except Exception as e:
        consoleMessage_and_Print(f"Error during data pre-processing: {str(e)}")
        return None






import spacy
from transformers import AutoTokenizer, AutoModel
import torch

# Load SpaCy model
# Install the 'en_core_web_sm' model if it isn't already installed
try:
    nlp = spacy.load('en_core_web_sm')
except OSError:
    # Instead of this try~catch, we could also include this < https://github.com/explosion/spacy-models/releases/download/en_core_web_sm-3.5.0/en_core_web_sm-3.5.0.tar.gz > in the requirements.txt to directly load it
    from spacy.cli import download
    download('en_core_web_sm')
    nlp = spacy.load('en_core_web_sm')


# Load Hugging Face Transformers model
tokenizer = AutoTokenizer.from_pretrained("sentence-transformers/all-mpnet-base-v2")
model = AutoModel.from_pretrained("sentence-transformers/all-mpnet-base-v2")




import re
import nltk
from nltk.corpus import stopwords
from nltk.tokenize import word_tokenize
# Download necessary NLTK data
nltk.download('punkt')
nltk.download('stopwords')
nltk.download('averaged_perceptron_tagger')




import numpy as np
import sentencepiece as sp
from transformers import pipeline
# Load a summarization model
summarizer = pipeline("summarization")

def Summarized_text(passed_text):
    try:
        # Summarization
        summarize_text = summarizer(passed_text, max_length=70, min_length=30, do_sample=False)[0]['summary_text']
        return summarize_text
    except Exception as e:
        print(f"Summarization failed: {e}")
        return passed_text
    ###### Will uncomment Summarization during final deployment... as it takes a lot of time
    
def Lemmatize_text(text):
    # Text Cleaning
    text = re.sub(r'[^\w\s]', '', text)
    text = re.sub(r'\d+', '', text)
    text = re.sub(r'http\S+', '', text)  # Remove https URLs
    text = re.sub(r'www\.\S+', '', text)  # Remove www URLs
    
    # Tokenize and remove stopwords
    tokens = word_tokenize(text.lower())
    stop_words = set(stopwords.words('english'))
    custom_stopwords = {'example', 'another'}  # Add custom stopwords
    tokens = [word for word in tokens if word not in stop_words and word not in custom_stopwords]

    # NER - Remove named entities
    doc = nlp(' '.join(tokens))
    tokens = [token.text for token in doc if not token.ent_type_]
    
    # POS Tagging (optional)
    pos_tags = nltk.pos_tag(tokens)
    tokens = [word for word, pos in pos_tags if pos in ['NN', 'NNS']]  # Filter nouns
    
    # Lemmatize tokens using SpaCy
    doc = nlp(' '.join(tokens))
    lemmatized_text = ' '.join([token.lemma_ for token in doc])

    return lemmatized_text  # Return the cleaned and lemmatized text


from random import random
def text_processing_for_domain(text):
    # First, get the summarized text
    summarized_text = ""
    # summarized_text = Summarized_text(text)
    
    # Then, lemmatize the original text
    lemmatized_text = ""
    lemmatized_text = Lemmatize_text(text)

    if lemmatized_text and summarized_text:
        # Join both the summarized and lemmatized text
        if random() > 0.5:
            combined_text = summarized_text + "  " + lemmatized_text
        else:
            combined_text = lemmatized_text + "  " + summarized_text
        return combined_text
    elif summarized_text:
        return summarized_text
    elif lemmatized_text:
        return lemmatized_text
    else:
        return "Sustainability and Longevity" # Default FailSafe
    


from sentence_transformers import SentenceTransformer
from sklearn.cluster import AgglomerativeClustering, KMeans
from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.metrics import silhouette_score
from bertopic import BERTopic
from collections import Counter


def extract_problem_domains(df, 
                            text_column='Processed_ProblemDescription_forDomainExtraction',
                            cluster_range=(6, 8), 
                            top_words=7):
    consoleMessage_and_Print("Extracting Problem Domains...")
    
    # Sentence Transformers approach
    model = SentenceTransformer('all-mpnet-base-v2')
    embeddings = model.encode(df[text_column].tolist())
    
    # Perform hierarchical clustering with Silhouette Analysis
    silhouette_scores = []
    for n_clusters in range(cluster_range[0], cluster_range[1] + 1):
        clustering = AgglomerativeClustering(n_clusters=n_clusters)
        cluster_labels = clustering.fit_predict(embeddings)
        silhouette_avg = silhouette_score(embeddings, cluster_labels)
        silhouette_scores.append(silhouette_avg)
    
    # Determine the optimal number of clusters
    optimal_n_clusters = cluster_range[0] + silhouette_scores.index(max(silhouette_scores))
    
    # Perform clustering with the optimal number of clusters
    clustering = AgglomerativeClustering(n_clusters=optimal_n_clusters)
    cluster_labels = clustering.fit_predict(embeddings)
    
    # Get representative words for each cluster
    cluster_representations = {}
    for i in range(optimal_n_clusters):
        cluster_words = df.loc[cluster_labels == i, text_column].str.cat(sep=' ').split()
        cluster_representations[i] = [word for word, _ in Counter(cluster_words).most_common(top_words)]
    
    # Map cluster labels to representative words
    df["Problem_Cluster"] = cluster_labels
    df['Problem_Category_Words'] = [cluster_representations[label] for label in cluster_labels]
    
    consoleMessage_and_Print("Problem Domain Extraction completed. Returning from Problem Domain Extraction function.")
    return df, optimal_n_clusters, cluster_representations


















def Extract_Location(text):
    doc = nlp(text)
    locations = [ent.text for ent in doc.ents if ent.label_ in ['GPE', 'LOC']]
    return ' '.join(locations)

def text_processing_for_location(text):
    # Extract locations
    locations_text = Extract_Location(text)
    
    # Perform further text cleaning if necessary
    processed_locations_text = Lemmatize_text(locations_text)
    
    # Remove special characters, digits, and punctuation
    processed_locations_text = re.sub(r'[^a-zA-Z\s]', '', processed_locations_text)
    
    # Tokenize and remove stopwords
    tokens = word_tokenize(processed_locations_text.lower())
    stop_words = set(stopwords.words('english'))
    tokens = [word for word in tokens if word not in stop_words]
    
    # Join location words into a single string
    final_locations_text = ' '.join(tokens)
    
    return final_locations_text if final_locations_text else "India"
    

def extract_location_clusters(df, 
                              text_column1='Processed_LocationText_forClustering', # Extracted through NLP
                              text_column2='Geographical_Location', # User Input
                              cluster_range=(3, 5),
                              top_words=3):
    # Combine the two text columns
    text_column = "Combined_Location_Text"
    df[text_column] = df[text_column1] + ' ' + df[text_column2]
    
    consoleMessage_and_Print("Extracting Location Clusters...")
    
    # Sentence Transformers approach for embeddings
    model = SentenceTransformer('all-mpnet-base-v2')
    embeddings = model.encode(df[text_column].tolist())
    
    # Perform hierarchical clustering with Silhouette Analysis
    silhouette_scores = []
    for n_clusters in range(cluster_range[0], cluster_range[1] + 1):
        clustering = AgglomerativeClustering(n_clusters=n_clusters)
        cluster_labels = clustering.fit_predict(embeddings)
        silhouette_avg = silhouette_score(embeddings, cluster_labels)
        silhouette_scores.append(silhouette_avg)
    
    # Determine the optimal number of clusters
    optimal_n_clusters = cluster_range[0] + silhouette_scores.index(max(silhouette_scores))
    
    # Perform clustering with the optimal number of clusters
    clustering = AgglomerativeClustering(n_clusters=optimal_n_clusters)
    cluster_labels = clustering.fit_predict(embeddings)
    
    # Get representative words for each cluster
    cluster_representations = {}
    for i in range(optimal_n_clusters):
        cluster_words = df.loc[cluster_labels == i, text_column].str.cat(sep=' ').split()
        cluster_representations[i] = [word for word, _ in Counter(cluster_words).most_common(top_words)]
    
    # Map cluster labels to representative words
    df["Location_Cluster"] = cluster_labels
    df['Location_Category_Words'] = [cluster_representations[label] for label in cluster_labels]

    df = df.drop(text_column, axis=1)
    consoleMessage_and_Print("Location Clustering completed.")    
    return df, optimal_n_clusters, cluster_representations






















def create_cluster_dataframes(processed_df):
    # Create a dataframe for Financial Weights
    budget_cluster_df = processed_df.pivot_table(
        values='Financial_Weight', 
        index='Location_Cluster', 
        columns='Problem_Cluster', 
        aggfunc='sum', 
        fill_value=0)

    # Create a dataframe for Problem Descriptions
    problem_cluster_df = processed_df.groupby(['Location_Cluster', 'Problem_Cluster'])['Problem_Description'].apply(list).unstack()

    return budget_cluster_df, problem_cluster_df

from transformers import GPTNeoForCausalLM, GPT2Tokenizer
def generate_project_proposal(prompt):
    print("Trying to access gpt-neo-1.3B")
    print("prompt: \t", prompt)
    
    # Generate the proposal
    model = GPTNeoForCausalLM.from_pretrained("EleutherAI/gpt-neo-1.3B")
    tokenizer = GPT2Tokenizer.from_pretrained("EleutherAI/gpt-neo-1.3B")
    
        
    try:
        # input_ids = tokenizer.encode(prompt, return_tensors="pt")
        # Truncate the prompt to fit within the model's input limits
        max_input_length = 2048  # Adjust as per your model's limit
        input_ids = tokenizer.encode(prompt, return_tensors="pt", truncation=True, max_length=max_input_length)
        
        
        print("Input IDs shape:", input_ids.shape)
        output = model.generate(
            input_ids,
            # max_length=300,
            max_new_tokens=500,
            num_return_sequences=1,
            no_repeat_ngram_size=2,
            temperature=0.5,
            pad_token_id=tokenizer.eos_token_id  # Ensure padding with EOS token
            )
        print("Output shape:", output.shape)
        
        proposal = tokenizer.decode(output[0], skip_special_tokens=True)
        if "Project Proposal:" in proposal:
            proposal = proposal.split("Project Proposal:", 1)[1].strip()
        else:
            proposal = proposal.strip()
    
        # print("Successfully accessed gpt-neo-1.3B and returning")
        print("Generated Proposal: ", proposal)
        return proposal
    except Exception as e:
        print("Error generating proposal:", str(e))
        return "Hyper-local Sustainability Projects would lead to Longevity of the self and Prosperity of the community. Therefore UNSDGs coupled with Longevity initiatives should be focused upon."




import copy



def create_project_proposals(budget_cluster_df, problem_cluster_df, location_clusters, problem_clusters):
    consoleMessage_and_Print("\n Starting function: create_project_proposals")
    proposals = {}

    sanban_debug = False
    
    for loc in budget_cluster_df.index:
        consoleMessage_and_Print(f"\n loc: {loc}")
        
        for prob in budget_cluster_df.columns:
            consoleMessage_and_Print(f"\n prob: {prob}")
            
            location = ", ".join([item.strip() for item in location_clusters[loc] if item])  # Clean and join
            problem_domain = ", ".join([item.strip() for item in problem_clusters[prob] if item])  # Clean and join
            shuffled_descriptions = copy.deepcopy(problem_cluster_df.loc[loc, prob])
            # Create a deep copy of the problem descriptions, shuffle it, and join the first 10

            
            print("location: ", location)
            print("problem_domain: ", problem_domain)
            print("problem_descriptions: ", shuffled_descriptions)
            
            # Check if problem_descriptions is valid (not NaN and not an empty list)
            if isinstance(shuffled_descriptions, list) and shuffled_descriptions:
                # print(f"\nGenerating proposal for location: {location}, problem domain: {problem_domain}")
                consoleMessage_and_Print(f"Generating PP")
                
                random.shuffle(shuffled_descriptions)
                # Prepare the prompt
                # problems_summary = "; \n".join(problem_descriptions)  # Join all problem descriptions
                # problems_summary = "; \n".join(problem_descriptions[:3])  # Limit to first 3 for brevity
                problems_summary = "; \n".join(shuffled_descriptions[:3])
                
                
                # prompt = f"Generate a solution oriented project proposal for the following:\n\nLocation: {location}\nProblem Domain: {problem_domain}\nProblems: {problems_summary}\n\nProject Proposal:"
                # prompt = f"Generate a solution-oriented project proposal for the following public problem (only output the proposal):\n\n Geographical/Digital Location: {location}\nProblem Category: {problem_domain}\nProblems: {problems_summary}\n\nProject Proposal:"
                prompt = f"Generate a single solution-oriented project proposal bespoke to the following Location~Domain cluster of public problems:\n\n Geographical/Digital Location: {location}\nProblem Domain: {problem_domain}\nProblems: {problems_summary}\n\nProject Proposal: <only output this proposal>"

                proposal = generate_project_proposal(prompt)
                # Check if proposal is valid
                if isinstance(proposal, str) and proposal.strip():  # Valid string that's not empty
                    proposals[(loc, prob)] = proposal
                    
                    sanban_debug = True
                    break
                    
            else:
                print(f"Skipping empty problem descriptions for location: {location}, problem domain: {problem_domain}")
        
        if sanban_debug:
            break
    
    return proposals
        

# def create_project_proposals(budget_cluster_df, problem_cluster_df, location_clusters, problem_clusters):
#     print("\n Starting function: create_project_proposals")
#     console_messages.append("\n Starting function: create_project_proposals")
#     proposals = {}
#     for loc in budget_cluster_df.index:
#         print("\n loc: ", loc)
#         console_messages.append(f"\n loc: {loc}")
        
#         for prob in budget_cluster_df.columns:
#             console_messages.append(f"\n prob: {prob}")
#             print("\n prob: ", prob)
            
#             location = ", ".join([item.strip() for item in location_clusters[loc] if item])  # Clean and join
#             problem_domain = ", ".join([item.strip() for item in problem_clusters[prob] if item])  # Clean and join
#             problem_descriptions = problem_cluster_df.loc[loc, prob]
            
#             print("location: ",location)
#             print("problem_domain: ",problem_domain)
#             print("problem_descriptions: ",problem_descriptions)
            
#             if problem_descriptions:# and not pd.isna(problem_descriptions):
                
#                 print(f"\nGenerating proposal for location: {location}, problem domain: {problem_domain}")
                
#                 # console_messages.append(f"\nGenerating proposal for location: {location}, problem domain: {problem_domain}")
                
#                 # Prepare the prompt
#                 problems_summary = "; \n".join(problem_descriptions[:3])  # Limit to first 3 for brevity                
#                 # problems_summary = "; ".join(problem_descriptions)
#                 # prompt = f"Generate a project proposal for the following:\n\nLocation: {location}\nProblem Domain: {problem_domain}\nProblems: {problems_summary}\nBudget: ${financial_weight:.2f}\n\nProject Proposal:"
#                 prompt = f"Generate a solution oriented project proposal for the following:\n\nLocation: {location}\nProblem Domain: {problem_domain}\nProblems: {problems_summary}\n\nProject Proposal:"
                
#                 proposal = generate_project_proposal(prompt)
#                 proposals[(loc, prob)] = proposal
#                 print("Generated Proposal: ", proposal)
                
#             else:
#                 print(f"Skipping empty problem descriptions for location: {location}, problem domain: {problem_domain}")
    
#     return proposals



    

# def create_project_proposals(budget_cluster_df, problem_cluster_df, location_clusters, problem_clusters):
#     print("\n Starting function: create_project_proposals")
#     console_messages.append("\n Starting function: create_project_proposals")
#     proposals = {}
#     for loc in budget_cluster_df.index:
#         for prob in budget_cluster_df.columns:
#             location = ", ".join(location_clusters[loc])
#             problem_domain = ", ".join(problem_clusters[prob])
#             problem_descriptions = problem_cluster_df.loc[loc, prob]
            
#             if problem_descriptions:
#                 proposal = generate_project_proposal(
#                     problem_descriptions,
#                     location, 
#                     problem_domain)
#                 proposals[(loc, prob)] = proposal
#     console_messages.append("\n Exiting function: create_project_proposals")
#     return proposals



















def nlp_pipeline(original_df):
    consoleMessage_and_Print("Starting NLP pipeline...")
    
    # Data Preprocessing
    processed_df = data_pre_processing(original_df) # merged_dataset

    # Starting the Pipeline for Domain Extraction
    consoleMessage_and_Print("Executing Text processing function for Domain identification")
    # Apply the text_processing_for_domain function to the DataFrame
    processed_df['Processed_ProblemDescription_forDomainExtraction'] = processed_df['Problem_Description'].apply(text_processing_for_domain)
    
    consoleMessage_and_Print("Removing entries which could not be allocated to any Problem Domain")
    # processed_df = processed_df.dropna(subset=['Processed_ProblemDescription_forDomainExtraction'], axis=0)
    # Drop rows where 'Processed_ProblemDescription_forDomainExtraction' contains empty arrays
    processed_df = processed_df[processed_df['Processed_ProblemDescription_forDomainExtraction'].apply(lambda x: len(x) > 0)]
    
    # Domain Clustering
    try:
        processed_df, optimal_n_clusters, problem_clusters = extract_problem_domains(processed_df)
        consoleMessage_and_Print(f"Optimal clusters for Domain extraction: {optimal_n_clusters}")
    except Exception as e:
        consoleMessage_and_Print(f"Error in extract_problem_domains: {str(e)}")
    consoleMessage_and_Print("NLP pipeline for Problem Domain extraction completed.")

    
    consoleMessage_and_Print("Starting NLP pipeline for Location extraction with text processing.")
    
    # Apply the text_processing_for_location function to the DataFrame
    processed_df['Processed_LocationText_forClustering'] = processed_df['Problem_Description'].apply(text_processing_for_location)
    # processed_df['Processed_LocationText_forClustering'], processed_df['Extracted_Locations'] = zip(*processed_df.apply(text_processing_for_location, axis=1))
        
    # Location Clustering
    try:
        processed_df, optimal_n_clusters, location_clusters = extract_location_clusters(processed_df)
        consoleMessage_and_Print(f"Optimal clusters for Location extraction: {optimal_n_clusters}")
    except Exception as e:
        consoleMessage_and_Print(f"Error in extract_location_clusters: {str(e)}")
    consoleMessage_and_Print("NLP pipeline for location extraction completed.")
    
    
    # Create cluster dataframes
    budget_cluster_df, problem_cluster_df = create_cluster_dataframes(processed_df)

    print("Clustering Done...")
    # return processed_df, budget_cluster_df, problem_cluster_df, location_clusters, problem_clusters

    print("\n location_clusters_1: ", location_clusters)
    print("\n problem_clusters_1: ", problem_clusters)
    # # Generate project proposals
    # location_clusters = dict(enumerate(processed_df['Location_Category_Words'].unique()))
    # problem_clusters = dict(enumerate(processed_df['Problem_Category_Words'].unique()))
    # print("\n location_clusters_2: ", location_clusters)
    # print("\n problem_clusters_2: ", problem_clusters)
    project_proposals = create_project_proposals(budget_cluster_df, problem_cluster_df, location_clusters, problem_clusters)

    consoleMessage_and_Print("NLP pipeline completed.")
    return processed_df, budget_cluster_df, problem_cluster_df, project_proposals, location_clusters, problem_clusters
    




    
    
    
console_messages = []
def consoleMessage_and_Print(some_text = ""):
    console_messages.append(some_text)
    print(some_text)




def process_excel(file):
    consoleMessage_and_Print("Processing starts. Reading the uploaded Excel file...")
    # Ensure the file path is correct
    file_path = file.name if hasattr(file, 'name') else file
    # Read the Excel file
    df = pd.read_excel(file_path)

    try:
        # Process the DataFrame
        consoleMessage_and_Print("Processing the DataFrame...")
        processed_df, budget_cluster_df, problem_cluster_df, project_proposals, location_clusters, problem_clusters = nlp_pipeline(df)
        # processed_df, budget_cluster_df, problem_cluster_df, location_clusters, problem_clusters  = nlp_pipeline(df)

        consoleMessage_and_Print("Error was here")
        #This code first converts the dictionary to a DataFrame with a single column for the composite key.
        #Then, it splits the composite key into separate columns for Location_Cluster and Problem_Cluster.
        #Finally, it reorders the columns and writes the DataFrame to an Excel sheet.
        try: # Meta AI Solution
            # Convert project_proposals dictionary to DataFrame
            project_proposals_df = pd.DataFrame(list(project_proposals.items()), columns=['Location_Cluster_Problem_Cluster', 'Solutions Proposed'])
            # consoleMessage_and_Print("CheckPoint 1")
            
            # Split the composite key into separate columns
            project_proposals_df[['Location_Cluster', 'Problem_Cluster']] = project_proposals_df['Location_Cluster_Problem_Cluster'].apply(pd.Series)
            # consoleMessage_and_Print("CheckPoint 2")
            
            # Drop the composite key column
            project_proposals_df.drop('Location_Cluster_Problem_Cluster', axis=1, inplace=True)
            # consoleMessage_and_Print("CheckPoint 3")
    
            # Reorder the columns
            project_proposals_df = project_proposals_df[['Location_Cluster', 'Problem_Cluster', 'Solutions Proposed']]
            # consoleMessage_and_Print("CheckPoint 4")
            
        except Exception as e:
            consoleMessage_and_Print("Meta AI Solution did not work, trying CHATGPT solution")
            try:
                
                # Convert project_proposals dictionary to DataFrame
                project_proposals_df = pd.DataFrame.from_dict(
                    proposals, orient='index', columns=['Solutions Proposed']
                )
                
                # If the index is a tuple, it automatically becomes a MultiIndex, so we handle naming correctly:
                if isinstance(project_proposals_df.index, pd.MultiIndex):
                    project_proposals_df.index.names = ['Location_Cluster', 'Problem_Cluster']
                else:
                    # If for some reason it's not a MultiIndex, we name it appropriately
                    project_proposals_df.index.name = 'Cluster'
                
                # Reset index to have Location_Cluster and Problem_Cluster as columns
                project_proposals_df.reset_index(inplace=True)
            
            except Exception as e:
                print(e)

            






        # ### Convert project_proposals dictionary to DataFrame
        # project_proposals_df = pd.DataFrame.from_dict(project_proposals, orient='index', columns=['Solutions Proposed'])
        # project_proposals_df.index.names = ['Location_Cluster', 'Problem_Cluster']
        # project_proposals_df.reset_index(inplace=True)

        




    

        consoleMessage_and_Print("Creating the Excel file.")
        output_filename = "OutPut_PPs.xlsx"
        with pd.ExcelWriter(output_filename) as writer:
            processed_df.to_excel(writer, sheet_name='Input_Processed', index=False)
            budget_cluster_df.to_excel(writer, sheet_name='Financial_Weights')
            problem_cluster_df.to_excel(writer, sheet_name='Problem_Descriptions')
            try:
                project_proposals_df.to_excel(writer, sheet_name='Project_Proposals', index=False)
            except Exception as e:
                consoleMessage_and_Print("Error during Project Proposal excelling at the end")
            


                
            # Ensure location_clusters and problem_clusters are in DataFrame format
            if isinstance(location_clusters, pd.DataFrame):
                location_clusters.to_excel(writer, sheet_name='Location_Clusters', index=False)
            else:
                consoleMessage_and_Print("Converting Location Clusters to df")
                pd.DataFrame(location_clusters).to_excel(writer, sheet_name='Location_Clusters', index=False)
            
            if isinstance(problem_clusters, pd.DataFrame):
                problem_clusters.to_excel(writer, sheet_name='Problem_Clusters', index=False)
            else:
                consoleMessage_and_Print("Converting Problem Clusters to df")
                pd.DataFrame(problem_clusters).to_excel(writer, sheet_name='Problem_Clusters', index=False)


        
        consoleMessage_and_Print("Processing completed. Ready for download.")
        return output_filename, "\n".join(console_messages)  # Return the processed DataFrame as Excel file
        
    except Exception as e:
        # return str(e)  # Return the error message
        # error_message = f"Error processing file: {str(e)}"
        # print(error_message)  # Log the error
        consoleMessage_and_Print(f"Error during processing: {str(e)}")
        # return error_message, "Santanu Banerjee" # Return the error message to the user
        return None, "\n".join(console_messages)


        


example_files = []
# example_files.append('#TaxDirection (Responses)_BasicExample.xlsx')
example_files.append('#TaxDirection (Responses)_IntermediateExample.xlsx')
# example_files.append('#TaxDirection (Responses)_UltimateExample.xlsx')


import random
a_random_object = random.choice(["&rArr;", "&rarrtl;", "&Rarr;", "&rarr;"])


# Define the Gradio interface
interface = gr.Interface(
    fn=process_excel,  # The function to process the uploaded file
    inputs=gr.File(type="filepath", label="Upload Excel File here. \t Be sure to check that the column headings in your upload are the same as in the Example files below. \t (Otherwise there will be Error during the processing)"),  # File upload input
    
    examples=example_files,  # Add the example files
    
    
    outputs=[
        gr.File(label="Download the processed Excel File containing the ** Project Proposals ** for each Location~Problem paired combination"),  # File download output
        gr.Textbox(label="Console Messages", lines=10, interactive=False)  # Console messages output
        ],
    
    
    # title="Excel File Uploader",
    # title="Upload Excel file containing #TaxDirections &rarr; Download HyperLocal Project Proposals\n",
    
    title = (
        "<p style='font-weight: bold; font-size: 25px; text-align: center;'>"
        "<span style='color: blue;'>Upload Excel file containing #TaxDirections</span> "
        
        # "<span style='color: brown; font-size: 35px;'>&rarr; </span>"
        # "<span style='color: brown; font-size: 35px;'>&rArr;  &rarrtl; &Rarr; </span>"
        "<span style='color: brown; font-size: 35px;'> " +a_random_object +" </span>"
        
        "<span style='color: green;'>Download HyperLocal Project Proposals</span>"
        "</p>\n"
    ),



    description=(
        "<p style='font-size: 12px; color: gray; text-align: center'>This tool allows for the systematic evaluation and proposal of solutions tailored to specific location-problem pairs, ensuring efficient resource allocation and project planning. For more information, visit <a href='https://santanban.github.io/TaxDirection/' target='_blank'>#TaxDirection weblink</a>.</p>"
        
        "<p style='font-weight: bold; font-size: 16px; color: blue;'>Upload an Excel file to process and download the result or use the Example files:</p>"
        "<p style='font-weight: bold; font-size: 15px; color: blue;'>(click on any of them to directly process the file and Download the result)</p>"
        
        "<p style='font-weight: bold; font-size: 14px; color: green; text-align: right;'>Processed output contains a Project Proposal for each Location~Problem paired combination (i.e. each cell).</p>"
        "<p style='font-weight: bold; font-size: 13px; color: green; text-align: right;'>Corresponding Budget Allocation and estimated Project Completion Time are provided in different sheets.</p>"

        
        "<p style='font-size: 12px; color: gray; text-align: center'>Note: The example files provided above are for demonstration purposes. Feel free to upload your own Excel files to see the results. If you have any questions, refer to the documentation-links or contact <a href='https://www.change.org/p/democracy-evolution-ensuring-humanity-s-eternal-existence-through-taxdirection' target='_blank'>support</a>.</p>"
        
    )  # Solid description with right-aligned second sentence

)



# Launch the interface
if __name__ == "__main__":
    interface.launch()