Spaces:
Sleeping
Sleeping
File size: 5,019 Bytes
ce4a4e7 6aa59d5 ce4a4e7 6aa59d5 ce4a4e7 6aa59d5 ce4a4e7 6aa59d5 ce4a4e7 6aa59d5 ce4a4e7 6aa59d5 ce4a4e7 6aa59d5 ce4a4e7 716d761 6aa59d5 ce4a4e7 6aa59d5 ce4a4e7 6aa59d5 ce4a4e7 716d761 ce4a4e7 6aa59d5 ce4a4e7 716d761 ce4a4e7 0797974 ce4a4e7 6aa59d5 ce4a4e7 6aa59d5 ce4a4e7 6aa59d5 ce4a4e7 0797974 6aa59d5 ce4a4e7 716d761 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 |
import gradio as gr
import pandas as pd
from OpenAITools.FetchTools import fetch_clinical_trials
from langchain_openai import ChatOpenAI
from langchain_groq import ChatGroq
from OpenAITools.CrinicalTrialTools import SimpleClinicalTrialAgent, GraderAgent, LLMTranslator, generate_ex_question_English
# モデルとエージェントの初期化
groq = ChatGroq(model_name="llama3-70b-8192", temperature=0)
translator = LLMTranslator(groq)
CriteriaCheckAgent = SimpleClinicalTrialAgent(groq)
grader_agent = GraderAgent(groq)
# データフレームを生成する関数
def generate_dataframe(age, sex, tumor_type, GeneMutation, Meseable, Biopsiable):
# 日本語の腫瘍タイプを英語に翻訳
TumorName = translator.translate(tumor_type)
# 質問文を生成
ex_question = generate_ex_question_English(age, sex, TumorName, GeneMutation, Meseable, Biopsiable)
# 臨床試験データの取得
df = fetch_clinical_trials(TumorName)
df['AgentJudgment'] = None
df['AgentGrade'] = None
# 臨床試験の適格性の評価
NCTIDs = list(df['NCTID'])
progress = gr.Progress(track_tqdm=True)
for i, nct_id in enumerate(NCTIDs):
target_criteria = df.loc[df['NCTID'] == nct_id, 'Eligibility Criteria'].values[0]
agent_judgment = CriteriaCheckAgent.evaluate_eligibility(target_criteria, ex_question)
agent_grade = grader_agent.evaluate_eligibility(agent_judgment)
# データフレームの更新
df.loc[df['NCTID'] == nct_id, 'AgentJudgment'] = agent_judgment
df.loc[df['NCTID'] == nct_id, 'AgentGrade'] = agent_grade
progress((i + 1) / len(NCTIDs))
# 列を指定した順に並び替え
columns_order = ['NCTID', 'AgentGrade', 'Title', 'AgentJudgment', 'Japanes Locations',
'Primary Completion Date', 'Cancer', 'Summary', 'Eligibility Criteria']
df = df[columns_order]
return df, df # フィルタ用と表示用にデータフレームを返す
# 特定のAgentGrade(yes, no, unclear)に基づいて行をフィルタリングする関数
def filter_rows_by_grade(original_df, grade):
df_filtered = original_df[original_df['AgentGrade'] == grade]
return df_filtered, df_filtered
# CSVとして保存しダウンロードする関数
def download_filtered_csv(df):
file_path = "filtered_data.csv"
df.to_csv(file_path, index=False)
return file_path
# 全体結果をCSVとして保存しダウンロードする関数
def download_full_csv(df):
file_path = "full_data.csv"
df.to_csv(file_path, index=False)
return file_path
# Gradioインターフェースの作成
with gr.Blocks() as demo:
gr.Markdown("## 臨床試験適格性評価インターフェース")
# 各種入力フィールド
age_input = gr.Textbox(label="Age", placeholder="例: 65")
sex_input = gr.Dropdown(choices=["男性", "女性"], label="Sex")
tumor_type_input = gr.Textbox(label="Tumor Type", placeholder="例: gastric cancer, 日本でも良いですが英語の方が精度が高いです。")
gene_mutation_input = gr.Textbox(label="Gene Mutation", placeholder="例: HER2")
measurable_input = gr.Dropdown(choices=["有り", "無し", "不明"], label="Measurable Tumor")
biopsiable_input = gr.Dropdown(choices=["有り", "無し", "不明"], label="Biopsiable Tumor")
# データフレーム表示エリア
dataframe_output = gr.DataFrame()
original_df = gr.State()
filtered_df = gr.State()
# データフレーム生成ボタン
generate_button = gr.Button("Generate Clinical Trials Data")
# フィルタリングボタン
yes_button = gr.Button("Show Eligible Trials")
no_button = gr.Button("Show Ineligible Trials")
unclear_button = gr.Button("Show Unclear Trials")
# ダウンロードボタン
download_filtered_button = gr.Button("Download Filtered Data")
download_filtered_output = gr.File(label="Download Filtered Data")
download_full_button = gr.Button("Download Full Data")
download_full_output = gr.File(label="Download Full Data")
# ボタン動作の設定
generate_button.click(fn=generate_dataframe, inputs=[age_input, sex_input, tumor_type_input, gene_mutation_input, measurable_input, biopsiable_input], outputs=[dataframe_output, original_df])
yes_button.click(fn=filter_rows_by_grade, inputs=[original_df, gr.State("yes")], outputs=[dataframe_output, filtered_df])
no_button.click(fn=filter_rows_by_grade, inputs=[original_df, gr.State("no")], outputs=[dataframe_output, filtered_df])
unclear_button.click(fn=filter_rows_by_grade, inputs=[original_df, gr.State("unclear")], outputs=[dataframe_output, filtered_df])
download_filtered_button.click(fn=download_filtered_csv, inputs=filtered_df, outputs=download_filtered_output)
download_full_button.click(fn=download_full_csv, inputs=original_df, outputs=download_full_output)
if __name__ == "__main__":
demo.launch()
|