File size: 3,206 Bytes
0be6d6e
763589d
30a00ea
 
c42cef3
763589d
e3dbfa9
f90e854
 
0854641
 
 
763589d
7a40854
0be6d6e
763589d
 
 
 
 
 
ee30b6a
 
 
 
 
0be6d6e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ee30b6a
0be6d6e
 
 
763589d
0be6d6e
e3dbfa9
 
763589d
e3dbfa9
0be6d6e
 
 
 
 
e3dbfa9
 
 
0be6d6e
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
from transformers import Qwen2VLForConditionalGeneration, AutoProcessor
from qwen_vl_utils import process_vision_info
import streamlit as st
import torch
from PIL import Image

# Default: Load the model on the available device(s)
@st.cache_resource
def init_qwen_model():
    model = Qwen2VLForConditionalGeneration.from_pretrained("Qwen/Qwen2-VL-7B-Instruct", torch_dtype="auto", device_map="auto")
    processor = AutoProcessor.from_pretrained("Qwen/Qwen2-VL-7B-Instruct")
    return model, processor

MODEL, PROCESSOR = init_qwen_model()

# Streamlit app title
st.title("OCR Image Text Extraction")

# File uploader for images
uploaded_file = st.file_uploader("Choose an image...", type=["png", "jpg", "jpeg"])

if uploaded_file is not None:
    # Open the uploaded image file
    image = Image.open(uploaded_file)
    st.image(image, caption="Uploaded Image", use_column_width=True)

    # Add the spinner here while the model is processing
    with st.spinner("Extracting text..."):
        messages = [
            {
                "role": "user",
                "content": [
                    {
                        "type": "image",
                        "image": image,
                    },
                    {"type": "text", "text": "Run Optical Character recognition on the image."},
                ],
            }
        ]

        # Preparation for inference
        text = PROCESSOR.apply_chat_template(
            messages, tokenize=False, add_generation_prompt=True
        )
        image_inputs, video_inputs = process_vision_info(messages)
        inputs = PROCESSOR(
            text=[text],
            images=image_inputs,
            videos=video_inputs,
            padding=True,
            return_tensors="pt",
        )
        inputs = inputs.to("cpu")

        # Inference: Generation of the output
        generated_ids = MODEL.generate(**inputs, max_new_tokens=128)
        generated_ids_trimmed = [
            out_ids[len(in_ids) :] for in_ids, out_ids in zip(inputs.input_ids, generated_ids)
        ]
        structured_output = PROCESSOR.batch_decode(
            generated_ids_trimmed, skip_special_tokens=True, clean_up_tokenization_spaces=False
        )[0]

        # Convert structured output to plain text
        plain_text_output = " ".join(structured_output.split())  # Remove any extra spaces or line breaks

    # Display extracted plain text after the spinner ends
    st.subheader("Extracted Plain Text:")
    st.write(plain_text_output)

    # Keyword search functionality on plain text
    st.subheader("Keyword Search")
    search_query = st.text_input("Enter keywords to search within the extracted text")

    if search_query:
        # Check if the search query is in the plain text output
        if search_query.lower() in plain_text_output.lower():
            # Highlight the search query in the plain text
            highlighted_text = plain_text_output.replace(search_query, f"**{search_query}**", flags=re.IGNORECASE)
            st.markdown(f"Matching Text: {highlighted_text}", unsafe_allow_html=True)
        else:
            st.write("No matching text found.")
else:
    st.info("Please upload an image to extract text.")