File size: 10,221 Bytes
52b8a27
a403423
 
 
 
 
4b172ec
9473e59
 
 
 
a6dbe30
 
a403423
 
 
d07dc04
9473e59
a6dbe30
 
4b172ec
52b8a27
 
a403423
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
12805bd
 
a6dbe30
a403423
 
12805bd
 
a403423
12805bd
 
e6344ec
12805bd
 
 
 
 
 
 
 
 
 
e6344ec
 
12805bd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a403423
e6344ec
 
 
 
a6dbe30
12805bd
e6344ec
 
 
12805bd
 
e6344ec
a6dbe30
 
 
12805bd
a6dbe30
 
 
 
 
12805bd
a6dbe30
12805bd
 
e6344ec
a403423
12805bd
1f09741
7292376
 
e6344ec
a403423
e6344ec
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6193f33
 
 
a403423
 
 
86ad787
a403423
 
 
 
 
 
 
 
 
 
 
a6dbe30
 
e6344ec
a403423
 
e6344ec
a403423
 
 
 
 
 
 
 
12805bd
a6dbe30
12805bd
 
 
 
 
 
 
 
e6344ec
 
4b172ec
a403423
e6344ec
 
 
 
 
 
 
 
53f69b8
 
e6344ec
53f69b8
 
 
 
 
4b172ec
a403423
53f69b8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a403423
e6344ec
 
 
7292376
53f69b8
 
 
c8ab728
53f69b8
f8ff0d4
 
53f69b8
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
import warnings
import numpy as np
import pandas as pd
import os
import json
import random
import gradio as gr
import torch
import torch.nn as nn
import torch.optim as optim
from torch.utils.data import DataLoader, TensorDataset, IterableDataset
from sklearn.ensemble import IsolationForest, RandomForestClassifier
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import OneHotEncoder
from sklearn.neural_network import MLPClassifier
from deap import base, creator, tools, algorithms
from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline, AutoModelForSequenceClassification
import gc
import multiprocessing as mp
from joblib import Parallel, delayed

warnings.filterwarnings('ignore', category=FutureWarning, module='huggingface_hub.file_download')

# Initialize Example Emotions Dataset
data = {
    'context': [
        'I am happy', 'I am sad', 'I am angry', 'I am excited', 'I am calm',
        'I am feeling joyful', 'I am grieving', 'I am feeling peaceful', 'I am frustrated',
        'I am determined', 'I feel resentment', 'I am feeling glorious', 'I am motivated',
        'I am surprised', 'I am fearful', 'I am trusting', 'I feel disgust', 'I am optimistic',
        'I am pessimistic', 'I feel bored', 'I am envious'
    ],
    'emotion': [
        'joy', 'sadness', 'anger', 'joy', 'calmness', 'joy', 'grief', 'calmness', 'anger',
        'determination', 'resentment', 'glory', 'motivation', 'surprise', 'fear', 'trust',
        'disgust', 'optimism', 'pessimism', 'boredom', 'envy'
    ]
}
df = pd.DataFrame(data)

# Encoding the contexts using One-Hot Encoding (memory-efficient)
encoder = OneHotEncoder(handle_unknown='ignore', sparse=True)
contexts_encoded = encoder.fit_transform(df[['context']])

# Encoding emotions
emotions_target = pd.Categorical(df['emotion']).codes
emotion_classes = pd.Categorical(df['emotion']).categories

# Memory-efficient Neural Network with PyTorch
class MemoryEfficientNN(nn.Module):
    def __init__(self, input_size, hidden_size, num_classes):
        super(MemoryEfficientNN, self).__init__()
        self.layers = nn.Sequential(
            nn.Linear(input_size, hidden_size),
            nn.ReLU(),
            nn.Dropout(0.2),
            nn.Linear(hidden_size, hidden_size),
            nn.ReLU(),
            nn.Dropout(0.2),
            nn.Linear(hidden_size, num_classes)
        )
        
    def forward(self, x):
        return self.layers(x)

# Memory-efficient dataset
class MemoryEfficientDataset(IterableDataset):
    def __init__(self, X, y, batch_size):
        self.X = X
        self.y = y
        self.batch_size = batch_size

    def __iter__(self):
        for i in range(0, len(self.y), self.batch_size):
            X_batch = self.X[i:i+self.batch_size].toarray()
            y_batch = self.y[i:i+self.batch_size]
            yield torch.FloatTensor(X_batch), torch.LongTensor(y_batch)

# Train Memory-Efficient Neural Network
X_train, X_test, y_train, y_test = train_test_split(contexts_encoded, emotions_target, test_size=0.2, random_state=42)
input_size = X_train.shape[1]
hidden_size = 64
num_classes = len(emotion_classes)

device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model = MemoryEfficientNN(input_size, hidden_size, num_classes).to(device)
criterion = nn.CrossEntropyLoss()
optimizer = optim.Adam(model.parameters(), lr=0.001)

train_dataset = MemoryEfficientDataset(X_train, y_train, batch_size=32)
train_loader = DataLoader(train_dataset, batch_size=None)

num_epochs = 100
for epoch in range(num_epochs):
    for batch_X, batch_y in train_loader:
        batch_X, batch_y = batch_X.to(device), batch_y.to(device)
        outputs = model(batch_X)
        loss = criterion(outputs, batch_y)
        optimizer.zero_grad()
        loss.backward()
        optimizer.step()
    gc.collect()  # Garbage collection after each epoch

# Ensemble with Random Forest (memory-efficient)
rf_model = RandomForestClassifier(n_estimators=50, random_state=42, n_jobs=-1)
rf_model.fit(X_train, y_train)

# Isolation Forest Anomaly Detection Model (memory-efficient)
isolation_forest = IsolationForest(contamination=0.1, random_state=42, n_jobs=-1, max_samples='auto')
isolation_forest.fit(X_train)  # Fit the model before using it

# Enhanced Emotional States
emotions = {
    'joy': {'percentage': 10, 'motivation': 'positive', 'intensity': 0},
    'pleasure': {'percentage': 10, 'motivation': 'selfish', 'intensity': 0},
    'sadness': {'percentage': 10, 'motivation': 'negative', 'intensity': 0},
    'grief': {'percentage': 10, 'motivation': 'negative', 'intensity': 0},
    'anger': {'percentage': 10, 'motivation': 'traumatic or strong', 'intensity': 0},
    'calmness': {'percentage': 10, 'motivation': 'neutral', 'intensity': 0},
    'determination': {'percentage': 10, 'motivation': 'positive', 'intensity': 0},
    'resentment': {'percentage': 10, 'motivation': 'negative', 'intensity': 0},
    'glory': {'percentage': 10, 'motivation': 'positive', 'intensity': 0},
    'motivation': {'percentage': 10, 'motivation': 'positive', 'intensity': 0},
    'ideal_state': {'percentage': 100, 'motivation': 'balanced', 'intensity': 0},
    'fear': {'percentage': 10, 'motivation': 'defensive', 'intensity': 0},
    'surprise': {'percentage': 10, 'motivation': 'unexpected', 'intensity': 0},
    'anticipation': {'percentage': 10, 'motivation': 'predictive', 'intensity': 0},
    'trust': {'percentage': 10, 'motivation': 'reliable', 'intensity': 0},
    'disgust': {'percentage': 10, 'motivation': 'repulsive', 'intensity': 0},
    'optimism': {'percentage': 10, 'motivation': 'hopeful', 'intensity': 0},
    'pessimism': {'percentage': 10, 'motivation': 'doubtful', 'intensity': 0},
    'boredom': {'percentage': 10, 'motivation': 'indifferent', 'intensity': 0},
    'envy': {'percentage': 10, 'motivation': 'jealous', 'intensity': 0}
}
total_percentage = 200
default_percentage = total_percentage / len(emotions)
for emotion in emotions:
    emotions[emotion]['percentage'] = default_percentage
    emotion_history_file = 'emotion_history.json'

def load_historical_data(file_path=emotion_history_file):
    if os.path.exists(file_path):
        with open(file_path, 'r') as file:
            return json.load(file)
    return []

def save_historical_data(historical_data, file_path=emotion_history_file):
    with open(file_path, 'w') as file:
        json.dump(historical_data, file)

emotion_history = load_historical_data()

def update_emotion(emotion, percentage, intensity):
    emotions['ideal_state']['percentage'] -= percentage
    emotions[emotion]['percentage'] += percentage
    emotions[emotion]['intensity'] = intensity

    total_current = sum(e['percentage'] for e in emotions.values())
    adjustment = total_percentage - total_current
    emotions['ideal_state']['percentage'] += adjustment

def normalize_context(context):
    return context.lower().strip()

# Memory-efficient genetic algorithm for emotion evolution
def evolve_emotions():
    def evaluate(individual):
        ideal_state = individual[-1]
        other_emotions = individual[:-1]
        intensities = individual[-21:-1]
        return (abs(ideal_state - 100), 
                sum(other_emotions), 
                max(intensities) - min(intensities))

    creator.create("FitnessMulti", base.Fitness, weights=(-1.0, -1.0, -1.0))
    creator.create("Individual", list, fitness=creator.FitnessMulti)

    toolbox = base.Toolbox()
    toolbox.register("attr_float", random.uniform, 0, 20)
    toolbox.register("attr_intensity", random.uniform, 0, 10)
    toolbox.register("individual", tools.initCycle, creator.Individual,
                     (toolbox.attr_float,) * (len(emotions) - 1) + 
                     (toolbox.attr_intensity,) * len(emotions) +
                     (lambda: random.uniform(80, 120),),
                     n=1)
    toolbox.register("population", tools.initRepeat, list, toolbox.individual)
    toolbox.register("mate", tools.cxTwoPoint)
    toolbox.register("mutate", tools.mutGaussian, mu=0, sigma=1, indpb=0.2)
    toolbox.register("select", tools.selNSGA2)
    toolbox.register("evaluate", evaluate)

    population = toolbox.population(n=100)
    algorithms.eaMuPlusLambda(population, toolbox, mu=50, lambda_=100, cxpb=0.7, mutpb=0.2, ngen=100, 
                              stats=None, halloffame=None, verbose=False)

    best_individual = tools.selBest(population, k=1)[0]
    emotion_values = best_individual[:len(emotions)-1]
    intensities = best_individual[-21:-1]
    ideal_state = best_individual[-1]

    for i, emotion in enumerate(emotions):
        emotions[emotion]['percentage'] = emotion_values[i]
        emotions[emotion]['intensity'] = intensities[i]

    emotions['ideal_state']['percentage'] = ideal_state

def process_input(text):
    try:
        normalized_text = normalize_context(text)
        encoded_text = encoder.transform([[normalized_text]])
        
        rf_prediction = rf_model.predict(encoded_text)[0]
        isolation_score = isolation_forest.decision_function(encoded_text)[0]
        nn_prediction = model(torch.FloatTensor(encoded_text.toarray()).to(device)).argmax(dim=1).item()
        
        predicted_emotion = emotion_classes[rf_prediction]
        sentiment_score = isolation_score
        generated_text = emotion_classes[nn_prediction]

        historical_data = load_historical_data()
        historical_data.append({
            'context': text,
            'predicted_emotion': predicted_emotion,
            'sentiment_score': sentiment_score,
            'generated_text': generated_text
        })
        save_historical_data(historical_data)

        return predicted_emotion, sentiment_score, generated_text

    except Exception as e:
        error_message = f"An error occurred: {str(e)}"
        print(error_message)  # Logging the error
        return error_message, error_message, error_message

iface = gr.Interface(
    fn=process_input,
    inputs="text",
    outputs=[
        gr.outputs.Textbox(label="Emotional Response"),
        gr.outputs.Textbox(label="Sentiment Response"),
        gr.outputs.Textbox(label="Generated Text")
    ],
    live=True
)

iface.launch(share=True)